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We study dry, dense active nematics at both particle and continuous levels. Specifically, extending
the Boltzmann-Ginzburg-Landau approach, we derive well-behaved hydrodynamic equations from a
Vicsek-style model with nematic alignment and pairwise repulsion. An extensive study of the phase
diagram shows qualitative agreement between the two levels of description. We find in particular
that the dynamics of topological defects strongly depends on parameters and can lead to “arch”
solutions forming a globally polar, smectic-like arrangement of Néel walls. We show how these
configurations are at the origin of the defect ordered states reported previously. This work offers
a detailed understanding of the theoretical description of dense active nematics directly rooted in
their microscopic dynamics.

Active nematics (collections of self-propelled elongated
particles aligning by collisions) has been the subject of
rather intense theoretical attention [1–21]. This flurry of
papers was largely triggered by a few remarkable exper-
iments [22–31] —see also [32, 33] for recent reviews. In
particular, Dogic et al. [22] studied a suspension of bun-
dles of stabilized microtubules and clusters of kinesins
motor proteins sandwiched at an oil-water interface. This
revealed sustained regimes of ‘nematic turbulence’ with
prominent motion of ± 1

2 topological defects, including
intriguing ‘defect ordered states’ in which the intrinsic
orientations of + 1

2 defects seem to be globally aligned.

Most theoretical efforts towards accounting for these
remarkable experiments fall into two categories: micro-
scopic, active particle models [3, 22, 34] and contin-
uum descriptions in terms of deterministic hydrodynamic
equations [5, 8, 9, 11]. The microscopic models are mostly
‘dry’, i.e., they neglect the fluid surrounding the active
particles, while mostly ‘wet’ continuous descriptions, i.e.
including a Stokes equation describing this fluid, have
been considered. Dry continuous descriptions have also
been written by enslaving the fluid [10, 12, 13]. While all
these works had some success in accounting for experi-
mentally observed properties, they lack a direct connec-
tion between the microscopic and macroscopic levels: the
proposed continuous descriptions have not been studied
in parallel to particle-based models. It is thus impossible
to relate clearly their many parameters to those of any
underlying microscopic dynamics.

In this Letter, we bridge the gap between particle-
based models and continuous theories for dense active
nematics systems, focusing on the dry case. Extending
the Boltzmann-Ginzburg-Landau approach of [35–37],
we derive well-behaved hydrodynamic equations from a
Vicsek-style active-nematics model with alignment and

repulsion interactions. An extensive study of the phase
diagrams of both particle model and hydrodynamic equa-
tions (varying key parameters of the microscopic dynam-
ics) shows qualitative agreement between the two descrip-
tion levels. Among our salient results, we find that the
dynamics of topological defects strongly depends on spe-
cific parameters. We also uncover ‘arch’ solutions form-
ing a globally polar, smectic-like arrangement of Néel
walls that coexist with the homogeneous nematic state
in large regions of parameter space. We show them to
be at the origin of ‘defect ordered states’ reported pre-
viously in [13, 22]. Our work offers an understanding
of the theoretical description of dense active nematics di-
rectly rooted in their microscopic dynamics and a unified
account of previous partial results.

The microscopic, dry models proposed so far for dense
active nematics rely on volume exclusion effects between
elongated particles [3, 22]. Here we use a Vicsek-style
model instead, where pointwise particles interact with
those within a fixed distance [38, 39]. This makes both
the derivation of hydrodynamic equations and an exten-
sive numerical study easier. Specifically, we study a vari-
ant of the model introduced in [40] for the study of active
smectics. We consider point-particles moving at constant
speed v0 along the unit vector e(θ) defined by their head-
ing θ in a rectangular domain of size Lx×Ly with periodic
boundary conditions. At discrete unit timesteps, position
ri and heading θi of particle i are updated according to:

rt+1
i =rti + v0 e(θt+1

i ) (1)

θt+1
i =arg

[
εt〈sgn(cos(θti−θtj)) e(θtj)〉j+β〈r̂tji〉j

]
+ηχti (2)

where χti ∈ [−π2 ,
π
2 ] is an angular white noise drawn

from a uniform distribution, η is a parameter setting the
strength of the angular noise, εt = ±1 reverses sign with
probability rate k ∈ [0, 0.5], r̂ji is the unit vector point-



2

ing from particle j to i, and the average is taken over the
neighbors j within unit distance of particle i (including
i for the alignment, i.e. the first term in (2)). Pairwise
repulsion, modeled here as a torque for convenience, has
constant modulus with coupling β. The interaction range
is the same for both alignment and repulsion.

Without repulsion (β = 0), this model, for large re-
versal rate k, is the minimal model for active nemat-
ics introduced in [41] and further studied in [42, 43],
while without velocity reversals (k = 0) it is the Vicsek-
style model for ‘self-propelled rods’ of [36]. Figures 1a,b
show how the typical (ρ0, η) phase diagram of these
repulsion-free models changes in the presence of repul-
sion. First, the band-chaos coexistence phase bordering
the order/disorder black line is too small to be seen at
the system sizes and densities involved. Repulsion in-
duces the emergence of new phases below this black line:
For k = 0.5 (Fig. 1b), “arch” solutions (described in de-
tail below) coexist (in parameter space, not in real space
within a solution) with the defect-free nematic liquid at
large-enough density (blue region). For rods (k = 0,
Fig. 1a), an inner region of nematic chaos (in red) ap-
pears deep in the ordered phase [49]. Figures 1c,d show
how the two limit cases above (k = 0 and k = 0.5) are
connected when the reversal rate k is varied. In the
(ρ0, k) plane (at η = 0.1, Fig. 1c), the regions of ne-
matic chaos and arch solutions get closer to each other
as ρ0 gets larger. Increasing system size, the gap in be-
tween becomes narrower (not shown). In the (k, η) plane
(at ρ0 = 4, Fig. 1d), both the nematic chaos region and
the arch solutions disappear when approaching the basic
isotropic/nematic black transition line.

Nematic chaos is characterized by local nematic order
but global disorder ‘mediated’ by ± 1

2 topological defects
(Movie S2 in [47]). It has long but finite correlations
lengths and times, and is the result of a longitudinal
bending instability of the homogeneous nematic, similar
to that observed in the wet case. This instability never
saturates into regular undulations, except in small sys-
tems. Instead, defects are always nucleated and nematic
chaos sets in.

The arch solutions consist of a smectic pattern of
rather sharp walls akin to Néel- or π-walls observed in
some equilibrium liquid crystals (Fig. 2) [44]. Start-
ing from random initial conditions, local nematic order
quickly arises, defects are created, and move across the
periodic boundaries. In a large-enough system, this dy-
namics often results in some solution comprising sev-
eral arches, which are found more frequently than the
defect-free homogeneous nematic state (Movie S3 in [47],
Fig. 2a,b). Each arch displays local nematic order but is a
globally polar object. Particle trajectories show weak but
regular drift, with a velocity depending on their position
across the arch pattern (Movie S4 in [47]). Characteristic
profiles of density, nematic and drift velocity (polar or-
der) are shown in Fig. 2c. Arches do not have a preferred
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FIG. 1. (color online) Phase diagram of the particle model
(β = 0.5, v0 = 0.3, 256 × 256 periodic box). (a,b): (ρ0, η)
plane for the rods (k = 0) and active nematics (k = 0.5)
cases. (c): (ρ0, k) plane at η = 0.1. (d): (k, η) plane at
ρ0 = 4.

size: at fixed parameter values, there is a minimal width
below which they disappear, but no maximal width. The
minimal width varies with parameters (see [47]). They
form a regular pattern: a configuration of n arches of var-
ious width slowly evolves toward n arches of equal width
(Movie S5 in [47]).

To derive hydrodynamic equations for dense active ne-
matics, we start from a Boltzmann equation governing
f(r, θ, t), the probability (density) of finding a particle
at position r, with orientation θ, at time t [35, 37, 45].
This equation extends that used in [45] with a term de-
scribing velocity reversals at rate a, as in [43]:

∂tf + v0 e(θ) · ∇f = λ[〈f(θ − σ)〉σ − f(θ)] + Icol[f ]

+a[f(θ + π)− f(θ)] (3)

with λ a tumbling rate, ∇ the gradient operator, and
〈. . . 〉σ the average over a noise distribution P (σ) (with
rms η). The collision integral

Icol[f ] =

∫ π

−π
dθ1

∫ π

−π
dθ2f(r, θ1)

∫ ∞
0

ds s

∫ π

−π
dφK(s, φ, θ1, θ2)

×f(r+se(φ), θ2)
[
〈δ̂
(
Ψ(θ1, θ2)+σ−θ

)
〉σ−δ̂(θ1−θ)

]
(4)

where Ψ is the π-periodic nematic alignment function
[Ψ(θ1, θ2) = 1

2 (θ2 − θ1) for −π2 < θ2 − θ1 < π
2 ], incor-

porates the distance-dependent repulsive interaction via
the dependence of the collision kernel K(s, φ, θ1, θ2) on
the relative position r′− r ≡ se(φ) of the two collid-

ing particles; δ̂ is a 2π-periodic Dirac distribution. For
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FIG. 2. Arch solutions. (a) snapshot of a steady pattern of
arches in the microscopic model (L = 256, ρ0 = 4, v = 0.3,
η = 0.1, β = 0.5, k = 0.5, particles colored by their orien-
tation). (b) zoom on one of the arches seen in (a) (x-axis
chosen along the arch, particles’ orientation marked by dou-
ble arrows) (c) profiles of density, nematic and polar order
(modulus and direction) of a single arch (as in (b)) for the
microscopic model (left, same parameters as (a)) and the hy-
drodynamic equations (ρ0 = 1, a = 10, η = 0.1, b1 = 0.25).

particles of diameter d0, the angle φ is an impact pa-
rameter defined by the position of the contact point at
collision. The probability to collide within [φ, φ + dφ] is
proportional to cos(φ− θ12)dφ where θ12 is the direction
of e(θ1)−e(θ2) [collision occurs only if cos(φ− θ12) > 0].
The kernel K reads

K = 2g(s)

∣∣∣∣sin θ1−θ22

∣∣∣∣ cos(φ−θ12) Θ [cos (φ−θ12)] (5)

with Θ(x) the Heaviside function and g(s) an integrable
function over the interval [0, d0] modeling repulsion be-
tween soft spheres (g(s) = δ(s− d0) in the hard spheres
limit). The tumbling rate λ and size d0 can be set to
unity. Expanding f(r+se(φ), θ2)≈ [1+se(φ)·∇]f(r, θ2),
the Boltzmann equation is expressed as a hierarchy
of equations on complex modes fk given by fk(r) =∫ π
−π dθe

ıkθf(r, θ). Beside the density field f0 = ρ, fields
of interest are f1 and f2 which are related to the polarity
vector P = (<{f1},={f1}) and nematic tensor Q [Qxx =
<{f2}, Qxy = ={f2}]. This hierarchy is truncated and
closed with the scaling ansatz [45], ∇ ∼ ∂t ∼ δρ ∼ ε,
f2k−1 ∼ f2k ∼ ε|k|. At order O(ε3), we obtain the closed
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FIG. 3. Phase diagram of hydrodynamic equations. (a):
(ρ0, η) plane for a = 0.4. (b): (a, η) plane for ρ0 = 1.5.
(c): (ρ0, a) plane for η = 0.15. Colormap: angle of most un-
stable wavevector, if any. The thin green region along the
basic order/disorder line is the transverse banding instabil-
ity. Orange region: longitudinal bending instability leading
to nematic chaos. In the grey region, multiple arch solutions
coexist with the homogeneous nematic state (shown only on
panel (c)).

equations

∂tρ = − 1
2v0 (O∗f1 + Of∗1 ) (6)

∂tf1 = (α[ρ]− β|f2|2)f1 + ζf∗1 f2 − π0[ρ]Oρ

− π2[ρ]O∗f2 + γ2f2Of
∗
2 + γ1f

∗
2Of2 − λnf2O∗ρ

+ λ1f1O
∗f1 + λ2f1Of

∗
1 + λ3f

∗
1Of1 (7)

∂tf2 = (µ[ρ] + τ |f1|2 − ξ|f2|2)f2 + ωf21 + ν4f2
− π1[ρ]Of1 + χ1O

∗(f1f2) + χ2f2O
∗f1 + χ3f2Of

∗
1

+ κ1f
∗
1Of2 + κ2f1Oρ (8)

where O = ∂x + i∂y, O∗ = ∂x − i∂y, 4 = OO∗. These
equations include that for dilute rods [35, 45, 46]; the
last line in (7) and (8) contain new terms due to repul-
sion, whose coefficients depend on the first moments of
g(s). All coefficients are given in [47]. These equations
are formally very close to those obtained when enslav-
ing the fluid in wet active nematics [10, 12, 13]. A de-
tailed discussion of their structure will be given elsewhere
[48]. They possess two uniform solutions: the disordered
one (ρ = ρ0, f1 = f2 = 0), which is stable whenever
µ[ρ0] < 0, and the nematically-ordered one (ρ = ρ0,
f1 = 0, |f2|2 = µ[ρ0]/ξ) for µ[ρ0] > 0, whose full linear
stability analysis was performed semi-numerically [47].
Without repulsion, and for a = 0 and a→∞, we recover
the simple phase diagrams found respectively in [37, 45].
With repulsion (Fig. 3), the transversal “banding” insta-
bility region near the µ[ρ] = 0 line becomes very thin,
and the uniform nematic solution becomes unstable, in
the large density, low noise, and low reversal rate region,
to a mostly longitudinal bending instability (Fig. 3a).

We now study the inhomogeneous solutions of our hy-
drodynamic equations. As in the microscopic model, the
longitudinal bending instability never saturates into sta-
ble undulations if the system size is large enough. It
always leads to a nematic chaos regime qualitatively sim-
ilar to that of the particle model (Movie S6 [47]). Where
only the homogeneous nematic state is stable, we found
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no other solution, so that the regions of linear instability
described in Fig. 3 are one-to-one with those of nematic
chaos.

Equations (6,7,8) also support stable arch solutions co-
existing with the homogeneous nematic state. These so-
lutions are qualitatively similar to those observed in the
microscopic model (Fig. 2c, Movie S7 in [47]): at given
parameter values, arches have a minimal width but no
characteristic size. They eventually form a regular smec-
tic pattern. They are globally polar objects with polar
drift now encoded explicitly in the f1 field. Note however,
that the f1-field profiles are qualitatively different from
the polar drift profiles recorded in the microscopic model
(Fig. 2c), indicating a strong influence on this small field
of the approximations made to derive the equations. A
careful numerical investigation of the stability domain of
arches for a fixed-size system revealed that it is only in
rough qualitative agreement with that found in the mi-
croscopic model (Fig. 3c). Again, we attribute this dif-
ference to the absence of fluctuations: near the bottom of
the grey region in Fig. 3c, arch solutions are “fragile” and
probably do not resist even small amounts of noise. In
the particle-based model, all these fragile solutions disap-
pear, leaving the smaller regions of stable arches reported
in Figs. 1c,d.

We now examine the dynamics of ± 1
2 defects in both

our microscopic model and hydrodynamic equations.
Previous works have investigated defects in the nematic
chaos (or nematic turbulence) regime, mostly in wet sys-
tems [3–6, 8–10, 13, 14, 17, 19–21, 30, 31]. Here, in an
attempt to disentangle the consequences of the linear lon-
gitudinal bending instability (leading to chaos) from in-
trinsic defect properties, we study the dynamics of a ± 1

2
defects pair in the uniform nematic state, using param-
eter values for which this state is the only stable one.
In such conditions, the two defects eventually merge and
annihilate, since the spontaneous nucleation of a pair is
never observed on the scales studied. Increasing system
size and the initial distance separating defects they can
be observed for very long times. We mostly studied the
fate of the configuration shown in Fig. 4a. For both mi-
croscopic model and hydrodynamic equations, the + 1

2
defect has a well-defined asymptotic velocity v+ for large
separation distance. The − 1

2 defect has a vanishing ve-
locity in this limit with a diffusive behavior driven by the
fluctuations. This is in agreement with previous works.
However, the velocity of the +1

2 defect depends strikingly
on the speed v0 and the reversal rate: in both micro-
scopic model and hydrodynamic equations, it can even
change sign (Fig. 4b, Movies S8-11 in [47]) whereas +1

2
defects were only reported to move with their cap ahead
(i.e. upward here) before. (Note though that both signs
are considered in [19, 21].) We conjecture that in wet
active nematics the +1

2 defect velocity in the fluid frame
might take a different sign depending on swimming speed
or reversal rate of the active particles.

256

128

0 128 256
0

FIG. 4. Defects dynamics and defect ordered states. (a):
typical configuration during initial motion at ’asymptotic’ ve-
locities (microscopic model). (b): asymptotic velocity v+ of
the + 1

2
defect (along the vertical axis in (a)) vs v0. Top:

microscopic model (ρ0 = 4, η = 0.1, β = 0.5, k = 0.5). Bot-
tom: hydrodynamic equations (ρ0 = 3, η = 0.15, a = 8.0,
b1 = 0.25) (c) snapshot of defect ordered state (microscopic
model, ρ0 = 2, v0 = 0.05 η = 0.1, β = 0.5, k = 0.5). Colors as
in Fig. 2a with superimposed − 1

2
(triangles) and + 1

2
defects

(circles). The velocities of + 1
2

defects (red arrows) and their
intrinsic orientations (not shown) are globally polarly aligned.

This has direct consequences on the existence of defect
ordered states. No such regime was observed at the deter-
ministic hydrodynamic level. This remarkable dynamics
arises only for the microscopic model when v+ > 0, for
parameter values bordering the domain of observation
of arch solutions, where fluctuations are strong enough
to nucleate defect pairs. When v+ > 0, freshly-created
pairs unbind quasi-deterministically (for v+ < 0, they
recombine, but are also perpetually nucleated), and con-
tinuously remodel the underlying arch-pattern without
breaking its global polar order (Fig. 4c, Movie S12 in
[47]). Thus, the global ordering of + 1

2 defects —they
flock— only reflects that of the nearby arch pattern. This
elucidates the origin of the defect ordered state reported
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for the microscopic model studied in [22] (see also [12, 17]
for similar, but distinct situations).

To summarize, we have bridged the gap between mi-
croscopic and hydrodynamic levels in dense, dry active
nematics. The Boltzmann-Ginzburg-Landau approach
provides well-behaved hydrodynamic equations whose so-
lutions are in good qualitative agreement with collective
states of the original particle model. This comparison
was only possible thanks to the expression of hydrody-
namic transport coefficients in terms of the microscopic
control parameters. With respect to the dilute case, the
phase diagram contains two main new features: (i) a large
region at low reversal rate where the homogeneous ne-
matic state is unstable at low noise and leaves places to
nematic chaos, and (ii) multiple arch solutions that co-
exist with the nematic state at large reversal rate. These
solutions, that are different from structures reported in
related context [4, 11–13], form globally-polar smectic
patterns at the origin of the heretofore somewhat myste-
rious defect ordered states. We also demonstrated that
the properties of the ubiquitous ± 1

2 topological defects
depend strongly on microscopic parameters such as re-
versal rate and nominal particle speed.
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Phys. Rev. Lett. 92, 025702 (2004).
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