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We derive fundamental per-channel bounds on angle-integrated absorption and thermal radiation for arbitrary
bodies—for any given material susceptibility and bounding region—that simultaneously encode both the per-
volume limit on polarization set by passivity and geometric constraints on radiative efficiencies set by finite
object sizes through the scattering T-operator. We then analyze these bounds in two practical settings, compar-
ing against prior limits as well as near optimal structures discovered through topology optimization. Principally,
we show that the bounds properly capture the physically observed transition from the volume scaling of absorp-
tivity seen in deeply subwavelength objects (nanoparticle radius or thin film thickness) to the area scaling of

absorptivity seen in ray optics (blackbody limits).

Motivated by the increasing control of light offered by micro
and nanoscale structuring [1, 2], impetus to find bounds anal-
ogous to the blackbody limit for geometries that violate the
assumptions of ray optics (nanoparticles [3], thin films [4],
photonic crystals [5, 6], etc.) has steadily grown over the
past few decades. It is now well established that the ab-
sorption (radiative thermal emission) cross-sections of a com-
pact object can be much greater than its geometric area [7—
12] (“super-Planckian” emission), and that deeply subwave-
length films can achieve near unity absorptivity via surface
texturing [13, 14]. Limits applicable to all length scales and
materials could both provide insight into these representative
phenomena and guide efforts in related application areas such
as integrated and meta-optics [15—17], photovoltaics [18-21],
and photon sources [22-24].

Development of bounds for arbitrary objects have primar-
ily followed two overarching strategies: modal decomposi-
tions based on quasi-normal, Fourier and/or multipole expan-
sions [25-33], relating absorption cross-section to the number
of excitable optical modes (channels); or material bounds, uti-
lizing energy [34, 35] and/or spectral sum rules [36, 39, 40] to
constrain achievable polarization response. Separately, each
of these approaches present challenges for photonic design.
Modal decompositions incorporate the specific size and shape
characteristics of a body through expansion coefficients, and
hence, inherently, require some enumeration and characteri-
zation of the participating modes to determine the range of
values these coefficients can take [26, 41, 42]. Although fun-
damental considerations (transparency, energy, size, etc.) can
and have been used in this regard [28, 33, 43], such cut-offs
have yet to tightly bound potential coefficient values for arbi-
trary compact geometries, particularly when applied to metal-
lic nanoparticles and antennas [27, 35, 44]. Conversely, ma-
terial bounds set by intrinsic dissipation naturally reproduce
the volumetric scaling of absorptivity characteristic of deeply
subwavelength objects (and are highly accurate for the spe-
cial case of weak polarizability in this regime [35]). How-
ever, because such approaches intrinsically suppose an opti-
mally large response field existing at all points within an arbi-
trary object for any incident field, the same volumetric scaling
persists for all length scales. Consequently, material bounds
rapidly become too loose beyond quasi-static settings, yield-

ing unphysical divergences with both increasing object size
and material response.

In this letter, we derive bounds on thermal radiation and
absorption that combine these two approaches, linking the
impact of material response with the influence of an object’s
geometry through the scattering T-operator. This leads to
a per-channel limit on integrated absorption capturing both
extraction and radiative (scattering) loss processes through
the singular values of the imaginary part of the vacuum
Green function. The result is applicable to objects of any size,
exhibiting a smooth transition in absorptivity from the volume
scaling achievable in the quasi-static (deeply-subwavelength)
regime to the area scaling limit of macroscopic ray optics.
Further, the bounds always asymptotically approach the ray
optics limit (when all characteristic lengths are large) and
diverge sub-logarithmically (rather than linearly) with mate-
rial quality for objects of finite extent, significantly reducing
cross-section limits for typical optical media even when all
characteristic lengths are small. Throughout, we compare
the present results to prior bounds as well as structures
discovered using topology optimization, realizing a variety
of examples (metallic and dielectric) that nearly achieve the
predicted limits.

Derivation—From the relations of scattering theory,
both the power scattered from an incident field (|Eiyc)),
and the thermal radiation emitted at temperature 7', can be
expressed in terms of the scattering T-operator of an object
and the vacuum Green function G¥2¢ [45] as
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Here, w is the angular frequency, k, = 2xw/\ is the

wavenumber, Z is the impedance of free-space, Il (w) =
hw/ (Exp (Bhw) — 1) with (8 = 1/kgT) is the Planck energy



of a harmonic oscillator, Tr|[...] denotes the trace, Im [T] =
(T — T*) /24, and, by Kirchhoff’s law of thermal radiation, ®
is the object’s angle integrated absorption [46]. (A synopsis
of scattering formalism, along with a derivation of (2), is pro-
vided in Supplemental Material.) For a passive object, scat-
tered power must be positive for any incident field. As such,
(1) simultaneously dictates that all singular values of the T-
operator must be smaller than the material figure of merit

< ¢ - @l ®
T Imfx (@)
which was similarly derived in Ref. [35] for polarization
fields, and that Im [T] is positive-definite.
As Im [GY*9] is real-symmetric positive-definite, it can be
expressed via a singular value decomposition as

Im [G™] =Y pila;) (@l , &)

where, as supported by our later analysis, each p;
(eigenvalue) can be equated to the outgoing radia-
tive flux of the ¢th mode—the ith radiative efficacy
of the domain. Consider (2) using this expansion,
¢ = @/mEpiimle(Te)] - P2 1(q; IT| a)* —
(2/7) X q(igylisesy PiPs |(a: IT] ;)| - Now, take Top to be a
general operator described by the properties (']Topt)T = Topt
(reciprocity), || Top || < ¢ (passivity), and Im [Ty positive-
definite (passivity), ignoring all other physical constraints
that any true T-operator must satisfy. In this context,
two characteristics of any maxima of ® are clear. First,
as (Vi,5) pip; |(q; |']I‘Opt\qj>’2 > 0, the appearance of
any cross-terms ((q; |Top|q;)) will always decrease .
Therefore, to maximize ®, a general operator T,y must
be diagonalized in the basis of Im [GY*°], (4). Second,
the complex phase of (q; |Topq;) only influences the first
(positive) piece of the sum, and so the value of ® peaks
when (Vi) atan (Im [(q; |T| q;)] / Re [(q; |T|q;)]) = /2.
Together, these two considerations show that achievable
values of ® are bounded by taking T,y to be diagonalized by
(4) with purely imaginary eigenvalues: Tope = >, i7; |q;) (q;]
with (Vi) 7; € [0,¢]. As such,
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That is, based on the criterion {p; > 1/2, each channel in (6)
produces either the Landauer limited contribution of 1/4 [48],
or the material limited Cp; — (Cp;)°.

Interpretation—In terms of the T operator, the total
power extracted from any incident field |E;,) by an object is

Pext = ko (Eine| Im [T] |Eine) / (2Z). Comparing with (1) and
(2), @ thus amounts to the difference of the extracted (Im [T])
and scattered (TTIm [GY2¢] T) power for free-space states.
The separation of these two forms persists throughout the
derivation of the bounds, representing the linear and quadratic
terms of (5). ®p results from their connected physics.

In real space, Tr {Im [G¥*°]} = 3. p; is the integral of the
local density of free-space states over the domain of the ob-
ject. Following (6), the total power that can be extracted by
an object, the first term of (2), is hence bounded by its abil-
ity to interact with radiative modes, Tr {Im [T] Im [G¥*°]} =
> Tipi» which is maximized (independently) under com-
plete saturation of material response, (Vi) 7, = (. Relat-
edly, this form is also the result of applying the per-volume
(shape independent) optical response limit of Ref. [35] to in-
tegrated absorption, and is similar to the light trapping bound
of Ref. [34]. Due to these connections with prior work,

Dgs (w) =Y _Cpi=¢ / drTm [G¥*° (r,r)] (7)
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serves as a useful comparison for @y, and is subsequently re-
ferred to as the quasi-static bound. This name is chosen as (7)
follows from the assumption that the interaction of the object
with any incident field is identically material limited, which
can occur in quasi-static settings. This does nor mean that @
is valid only under the quasi-static approximation. Like @y,
¥y is a mathematical bound derived from Maxwell’s equa-
tions, albeit for any selection of parameters ®qp < Dys.

In (5) and (6) this extracted power contribution is sup-
pressed by scattering (radiative) losses, which are captured in
the quadratic term in (2) as the coupling of the polarization
currents generated within an object back to free-space modes:
originating through the operator TfIm [GY*°]T, each 7
represents the ability of the object to convert a given field
into a current, and each radiative efficacy p; the conversion
of a current into outgoing radiative flux. Equivalently, the
presence of strong polarization currents, necessary for strong
per-volume absorption, leads to radiative loses, and these
loses limit possible absorption. If (p; > 1/2, mirroring the
observed dependencies of absorption (ox V') and scattering
(x V?) seen in highly subwavelength metallic anten-
nas [26, 30], the growth of radiative losses with increasing
T; can potentially surpass the growth of the extracted power,
inducing saturation. As both processes are rooted in the same
conversion between radiative fields and polarization currents,
this critical coupling occurs at the compelling value of
701 = 1/2 [49, 50], the probability of a maximally entropic
Bernoulli process, resulting in the Landauer limit value of
Dot = 1/4.

Analysis—The practical usefulness of (6) stems from
its favorable mathematical properties. Namely, (6) mono-
tonically increases with ( or any p;, and, as proved in
Supplementary Material, each p; increases if the object grows
(domain monotonicity). This allows us to freely decouple any



@) 1o (®) 10’
710 3
< 10 < o ¢ =10)
S & 10}
- 10’ ~ /
>
E 10 Z ,
~— 2 1 i
= 10 10
2 0 2 S
10°} accs
1 -2 /
10 1 1 1 1 L I- I_3 I_ I_
10* 10° 10” 10" 10° o0 %t 0 100 100 100 100 10

Ball radius (R/A)

Film thickness (#/\)

FIG. 1. Bounds on angle-integrated absorption and thermal radiation for compact and extended bodies. Absorptivity (® normalized by
area A) bounds oy (orange lines) and @ (purple lines), for a range of ¢ = |x|?/Im [x] at a fixed wavelength \. These quantities are shown
as a function of the wavelength normalized radius R of an enclosing sphere (a), and thickness h of a semi-infinite film (b). Schematics of each
setting are included as insets. Even for small characteristic lengths ({ R, h} < 0.1)\) ®op is orders of magnitude smaller than ®g.

true object from an imagined encompassing region of space
(bounding domain). A mismatch between the domain of the
object and the domain of Im [G¥*°] must technically reduce
IT|| below ¢, but without any modification (6) remains an
upper bound on ®. That is, the result of (6) for any particular
bounding domain is applicable to any object that can be
enclosed (as well as any sub-domain).

The procedure for calculating @, is straightforward for
any bounding geometry (e.g. wires, disks, spheres, extended
films, stars, disconnected patches, etc.). Precisely, the set of
singular values {p;} of the domain can always be computed
by forming a real space matrix representation of Im [GV2€],

Im [Gvac] (l‘) _ Lg [ (Sin (7") n cos (7") . sin (7‘)) i
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with every r multiplied by a hidden k,, and then performing
a singular value decomposition of the result [51, 52]. Here, to
facilitate further investigation, we will focus on the high sym-
metry case of a ball where semi-analytic evaluation is manage-
able (expressions for films, as well as minor additional details,
are given in Supplemental Material). Nevertheless, we stress
that determining @, for domains lacking symmetry does not
raise any meaningful computationally difficulties.
For this geometry two types of singular values arise
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where Jy (—) is the fth Bessel function of the first kind with
an additional factor of 27 included in its argument, each ¢
(spherical harmonic) index has a multiplicity of (2¢ + 1), and
R is the radius of the ball normalized by the wavelength. Us-
ing standard properties of Bessel functions, it can be shown
that for values of R > /{, each of these singular values
tends to the asymptote 272 R, and that for any combination
of arguments pg‘) <m(l+1)(=xR)* ™/ (202 (¢ +3/2)) +
210 (wR)* 7 / (20 +5) (20 + 3) T2 (€ + 5/2)) and pi®) <
2 (rR)*™3 ((2¢+3)T% (£ +3/2)) (asymptotically ap-
proached for small values of R). These forms reveal two pre-
scient general features. First, in the limit of small domains
(R < 1), with “small” being determined by the value of (,
only the first singular value of the first type contributes, and
this triply degenerate (dipole) mode is responsible for the ini-
tial volume scaling necessitated by the physical meaning of
the bounds. Second, the radial growth of the singular val-
ues shows that the saturation condition (impact of radiative
losses) plays a major role in limiting radiative thermal emis-
sion and integrated-absorption in wavelength scale volumes.
(For ¢ = 109, Fig. 1 (a), radiative losses lead to order of mag-
nitude deviations of @, from ®¢, beyond R ~ 0.003\.) As
visually confirmed by Fig. 1 panel (a), as the domain grows an
increasing number of channels (multipoles) saturate causing
“steps” to appear in @, and these steps lead to successively
larger deviation with ®¢ that ultimately regularize the initial
volumetric scaling. Results for films, Fig. 1 (b), are qualita-
tively similar. However, since the domain is infinite, the steps
associated with saturation are now blended into a continuum,
and the large characteristic size limit is approached from be-
low rather than above. From a practical perspective, the fact
that @, can achieve near ideal absorptivity for very small
film thickness and moderate values of ( is quite remarkable,
a finding that is tacitly supported by a number of recent stud-
ies in 2D materials and meta-surfaces [53-56]. Crucially, in
either case, for any value of ¢, @, asymptotes to a geometric



perfect absorber (the blackbody limit).

The asymptotic behavior of the singular values also re-
veals general characteristics of the dependence of @, on
the material figure of merit (. Applying Sterling’s ap-
proximation to the bounding expressions given above, for
(¢ > emR) we have pf) ~ (exR/0)*' /4 and py) ~
(emR/0)***® /2, to arbitrary accuracy as ¢ becomes large.
Fix R, and suppose that { = pf) (pg) is analogous). Us-
ing the fact that erR/(k+¢) < emR/k the remaining
(unsaturated) linear contribution of ®, is then bounded by
9(erR)®/ (4 (k2 - (mR)Z))
creasingly higher spherical harmonics, the contribution of the
remaining unsaturated harmonics becomes increasingly small
compared to the contribution of the newly saturated harmonic,
~ (2k + 1) /4. But, saturation of the th singular value (in the
large ¢ limit) requires

¢ ¢
In (2> > (20+1)In (mz) , (10)

which has a sub-logarithmic dependence between ¢ and (.
Due to domain monotonicity, the above material scaling result
for a ball is applicable to all compact (finite sized) objects.

This bound on material quality scaling is well matched
to the features of the @,y curves in Fig. 1 panel (a). Once
the radius has surpassed ~ ), geometric increases in ¢
(x102) produce relatively minute changes in the bounds.
This behavior also appears for smaller radii at larger values
of (, but this range is not of great practical relevance since
materials with ¢ surpassing ~ 10® are quite rare. For instance,
in the optical to infrared, w € (0.5-15)um, ¢ (w) has a peak
value of approximately 1.7 x 10 for gold, 2.4 x 103 for
tungsten, 2.2 X 10? for silicon carbide, 6.8 x 10° for silicon,
3.3 x 107 for gallium arsenide, and 5.9 x 107 for gallium
phosphide [57].

Hence, as ( saturates in-

Optimizations—Case evidence for the tightness of (6)
is presented in Fig. 2. Using a gradient topology optimization
algorithm [2, 58], see Supplemental Material for details,
structures nearly achieving @, have been discovered for two
widely different domain sizes (R = 0.05\ and R = 0.5))
and a variety of metallic and dielectric susceptibilities. In
Fig. 2, these media are grouped by imaginary susceptibility,
corresponding to four different values of Im [x], {0.5,1, 2,4},
with the remaining variation in ¢ occurring due to Re [x]. Ex-
plicit values of Re [x] are given for circled points, providing
a sense of the range considered. As was previously remarked
by Miller et al. [35], ® is attained for a plane wave polarized
along the axis of an ellipsoidal metallic nanoparticle, given a
properly chosen aspect ratio. For small values of ( this ratio
is near unity and resonant metallic structures (Re[x] =~ —3)
matching both bounds are easily discovered. As ( moves to
moderate values, the aspect ratio required for an ellipsoidal
particle to match @4, becomes increasingly extreme. Due to
our chosen spherical boundary, discovered structures begin to
deviate considerably from ®, but continue to come within a
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FIG. 2. Comparison of bounds with geometries discovered by in-
verse design. Absorptivity (® over area A) of structures discovered
using gradient topology optimization for a variety of metallic (a) and
dielectric (b) materials characterized by the material figure of merit
¢ = |x|?/Im[x]. (See text for more information.) For comparison,
the bounds @, (6) and Py (7) are also depicted. In (a), all struc-
tures are bound by a ball of radius R = 0.05A. For panel (b), the
confining domain is a ball of R = 0.5\. The inset provides a visu-
alization of the structure (exterior and planar cut) for the rightmost
green square. The observation that optimized structures come within
factors of unity of ®.p provides case evidence of the tightness of (6).

factor of 2 of &y up to ¢ = 103. Past this point, numerical
issues impede our present algorithms and it remains to be
seen how much of the roughly order of magnitude headroom
allowed by @, is accessible.

Results for the larger domain, Fig. 2 (b), show similarly
good agreement. An example structure is depicted in the
right inset (full view and planar cut), corresponding to the
rightmost green square in the plot. Comparing with the
assumptions made in deriving (6), the T operator for this
structure (x = 20 + 44, & = 0.60 P,y is indeed found to
be nearly diagonal in the basis of Im [G¥*] and have almost
completely imaginary eigenvalues (for supporting data see
Supplemental Material).

Remarks—There are a few points that should be con-
sidered when using (6), or comparing to prior literature.
First, ®qp is a bound on thermal emission and integrated
absorption for a given domain and ( factor. By choosing
different geometries and material parameters, (6) can be
applied to any desired context, but the confining volume is an
essential feature. Second, there is no universal guarantee of
tightness. Beyond the demonstrated agreement of the bounds
with known quasi-static and ray optics asymptotics, the only
a priori guarantee is domain monotonicity; there are likely
volumes and material parameters where the value of @, will
be larger than the true ® of any practical structure. Next,
while we have only considered single wavelengths, there is
no reason the bounds can not be applied to finite frequency
ranges. The derivation of ®,, presented above does not



incorporate any spectral sum rules (derived from causality),
such as the fact that T, should obey Kramers-Kronig
dispersion relations, but for resonant absorption or thermal
emission simply multiplying the bound by the width of the
resonance should not produce a substantially looser bound
than @, at the peak wavelength. (As an expedient, taking
®p to be the peak value of a Lorentzian function of width
Aw = w Imx/|x| is likely a fair approximation.) Finally,
as suggested in the introduction, @,y can be interpreted as
the extension of prior multipole analysis [25-33] to general
domains with the crucial addition that an upper bound is
set on the number modes which may contribute through
the pseudo-rank of the imaginary part of the vacuum Green
function (Im [GY?°]) and the material figure of merit (¢)
(3). We foresee this rank revealing capability potentially
providing a number of benefits for future practical design and
optimization. We also note that much of what has been devel-
oped in this manuscript is applicable not only to generalized
electromagnetic scattering (for incident planewaves or dipolar
emitters with applications to solar cells, light-emitting diodes,
and single-photon emitters), but also to quantum mechanics,
acoustics, and other wave physics.
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