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We investigate the role of non-local correlations in LiFeAs by exploring an ab-initio-derived multi-
orbital Hubbard model for LiFeAs via the Two-Particle Self-Consistent (TPSC) approach. The
multi-orbital formulation of TPSC approximates the irreducible interaction vertex to be an orbital-
dependent constant, which is self-consistently determined from local spin and charge sum rules.
Within this approach, we disentangle the contribution of local and non-local correlations in LiFeAs
and show that in the local approximation one recovers the dynamical-mean field theory (DMFT)
result. The comparison of our theoretical results to most recent angular-resolved photoemission
spectroscopy (ARPES) and de-Haas van Alphen (dHvA) data shows that non-local correlations in

LiFeAs are decisive to describe the measured spectral function A(~k, ω), Fermi surface and scattering
rates. These findings underline the importance of non-local correlations and benchmark different
theoretical approaches for iron-based superconductors.

Introduction.- The nature of the electronic structure
in iron-based superconductors has been intensively scru-
tinized since their discovery in 20081,2. While ab initio
density functional theory (DFT) calculations can provide
a qualitative understanding of their bandstructure and
Fermi surface3–5, it became soon evident that correla-
tion effects originating from the strong local Coulomb
repulsion on the Fe atoms are responsible for many
experimental findings such as large effective masses,
Fermi surface renormalization, finite lifetimes or trans-
fer of spectral weight to high binding energies6–20. The
combined DFT with Dynamical Mean Field Theory
(DFT+DMFT) method, which approximates the elec-
tronic self-energy to be local in space and thus includes
frequency- and orbital-dependent local effects of elec-
tronic correlations, has been very successful in capturing
many of these observations. Some examples are orbital-
dependent correlations, incoherence properties and Fermi
surface renormalization.10–18,20–22 However, the single-
site DMFT cannot account for possible momentum-
dependent correlation effects such as relative band shifts
in opposite directions of, respectively, hole bands cen-
tered at Γ and electron bands centered at the Bril-
louin zone edge M (the so-called “blue/red shift”) in a
large class of iron-based superconductors23–27, or the re-
cently reported28 possible momentum-dependent scatter-
ing rates in angular-resolved photoemission spectroscopy
(ARPES) measurements of LiFeAs. Some of these ef-
fects have been suggested to play an important role in
the superconducting pairing mechanism24,29–31 as well.

Consideration of momentum dependence in the self-
energy in real materials’ calculations are scarce but
promising,32–38 showing, for instance, effects of band-
width widening and momentum-dependent bandshifts in
the systems studied33,35,37. Here we explore this depen-
dence by considering an approach where spin fluctuations
play the dominant role and it allows both, a description
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of local and non-local correlations on an equal footing.
The purpose of this work is twofold: (i) We first intro-

duce the multi-orbital formulation of the Two-Particle
Self-Consistent (TPSC) approach originally conceived
for the single-orbital Hubbard model39, which provides
momentum- and frequency- dependent self-energies in
the intermediate coupling regime. (ii) We apply the
method to the iron-based superconductor LiFeAs.

We find that the momentum-dependence obtained
within the TPSC approach introduces drastic changes to
the LiFeAs Fermi surface and bandstructure with respect
to DFT results. First, the innermost hole pocket centered
at Γ is shifted below the Fermi energy EF as de Haas-van
Alphen (dHvA) and ARPES26,40 measurements already
suggested. Second, we find a large accumulation of in-
coherent spectral weight around the Γ point as observed
in ARPES24–26,28,30. Third, the relative ”blue/red shift”
of the bands centered at Γ and M respectively24,25, is
properly described and, fourth, the momentum-averaged
TPSC results agree with the results obtained from pre-
vious local DFT+DMFT calculations15,25 pointing to an
important relation between both approaches in this re-
gion of interactions.
Models and methods.- Starting from a DFT calculation

of LiFeAs in the tetragonal crystal structure41 within
the Generalized Gradient Approximation (GGA)42 us-
ing the full-potential linear augmented plane-wave basis
from WIEN2K43, we derive an effective low-energy model
comprizing the Fe 3d orbitals using maximally localized
Wannier functions as implemented in Wannier9044 (see
Supplemental Material45). We effectively then solve a 2-
dimensional system by restricting our calculation to the
kz = 0 plane, since the low-energy electronic structure
shows only weak dispersion along kz. In this Wannier-
projected 2D model we have an electron occupation of
6. Interaction parameters for the lattice Hubbard model
were obtained within the constrained random-phase ap-
proximation (cRPA)46 on the DFT bandstructure (see
Supplemental Material45).

The TPSC method considers the Luttinger-Ward func-
tional Φ[G]47,48, which is a functional of the interact-
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ing Green’s function G and yields the self-energy Σ and
two-particle irreducible four-point vertex Γ as functional
derivatives

Σ =
δΦ

δG
, Γ =

δ2Φ

δG2
. (1)

Within the TPSC approach one approximates the vertex
Γ to be static and momentum independent39 (but fully
orbital dependent). One obtains a set of self-consistent
and conserving equations that satisfy the Pauli principle
and Mermin-Wagner theorem. The range of validity of
TPSC is the regime of weak to intermediate couplings
where the local and static approximation of the vertex is
valid, i.e. away from any phase transition. This method
has been extended to multi-site,49–54 nearest-neighbor,55

and multi-orbital56 generalizations of the Hubbard model
and has provided valuable insights on the pseudogap
physics in the cuprates57 and unconventional supercon-
ductivity.51,58,59

In the multi-orbital generalization of the TPSC
method similar to the original formulation56 we first in-
troduce the non-interacting susceptibility χ0 given by

χ0
λµνξ(~q, iqm) =

[
G0
νλ ? G

0
µξ

]
(~q, iqm) (2)

where G0 denotes the non-interacting Green’s function
in orbital-space, ? denotes a convolution over frequency
and momentum and qm = 2mπT the m-th bosonic Mat-
subara frequency. The interacting susceptibility χ is de-
composed into the spin and charge channel ( χsp and χch

respectively) and reads

χsp(~q, iqm) = [I− χ0(~q, iqm)U sp]−12χ0(~q, iqm)
χch(~q, iqm) = [I + χ0(~q, iqm)U ch]−12χ0(~q, iqm),

(3)

where the inversion of a 4-index tensor is given as the ma-
trix inverse after combining the first and last two indices
of λµνξ into a superindex (λµ)(νξ).

We only consider the U
ch/sp
ααββ and U

ch/sp
αβαβ = U

ch/sp
αββα ma-

trix elements of the renormalized irreducible vertices in
the spin U sp and the charge channel U ch to be nonzero,
corresponding to the atomic symmetry of 3d orbitals.
Those elements are determined by enforcing the following
local spin and charge sum rules

T
N~q

∑
~q,m

χsp
µνµν(~q, iqm) = 〈nµ↑〉+ 〈nν↑〉 − 2〈nµ↑nν↓〉,

T
N~q

∑
~q,m

χsp
µµνν(~q, iqm)

µ 6=ν
= 2〈nµ↑nν↑〉 − 2〈nµ↑nν↓〉,

T
N~q

∑
~q,m

χch
µµνν(~q, iqm) = 2〈(nµ↑ + nµ↓)nν↑〉 − nµnν ,

T
N~q

∑
~q,m

χch
µνµν(~q, iqm)

µ 6=ν
=

nµ+nν
2 − 〈(4nµ↑ − 2nµ↓)nν↑〉.

(4)
In order to solve this underdetermined set of equations
we employ an ansatz for the spin vertex U sp that is mo-
tivated by the Kanamori-Brueckner screening39,56 and
introduce an additional particle-hole symmetrization to

keep all equations within TPSC particle-hole symmetric:

U sp
µµµµ = 1

2

(
〈nµ↑nµ↓〉
〈nµ↑〉〈nµ↓〉 + particle↔hole

)
Uµµ

U sp
µνµν = 1

2

[
〈nµ↑nµ↓〉
〈nµ↑〉〈nµ↓〉Uµν +

〈nµ↑nµ↑〉
〈nµ↑〉〈nµ↑〉 (Uµν − Jµν)

+ particle↔hole] = U sp
µµνν = U sp

µννµ.
(5)

The local spin vertex U sp can be obtained by iterating
the equations above. For the charge channel we opti-
mize U ch in order to fulfill the corresponding charge sum
rules, restricting to positive values of U ch because in cer-
tain cases negative values can lead to non-causal self-
energies. Due to the constraint we search for values of
U ch that minimize (see Supplemental Material45) the dif-
ference between left-hand side and right-hand side of the
charge sume rules (Eq. (4)).

After the determination of the spin and charge vertices
the self-energy Σ and interacting Green’s function G are
then given as

Σµν =
1

4

∑
α,β

[
U spχspU sp,0 + U chχchU ch,0

]
ναµβ︸ ︷︷ ︸

:=Vναµβ

?G0
βα

G(~k, iωn) =
[
(iωn + µ)I−H0(~k)− Σ(~k, iωn)

]−1

, (6)

where the non-interacting vertices are zero except for the

matrix elements: U
sp/ch,0
µµµµ = Uµµ, U ch,0

µµνν = 2Uµν − Jµν
and U

sp/ch,0
µνµν = U

sp/ch,0
µννµ = U sp,0

µµνν = Jµν with µ 6= ν. No
Hartree term is included in Σ since it is already contained
in the DFT-derived Hamiltonian H0.

Our multi-orbital extension of TPSC differs from pre-
vious formulations56 on the following aspects: it restricts
the self-consistent equations in the charge channel in
Eq. (3) to ensure positivity of the spectral weight and
chooses a symmetrized ansatz for Usp (Eq. (5)). Further-
more, the set of local spin and charge sum rules (Eq. (4))
and bare vertex tensors U ch,0, Usp,0 (Eq. (6)) and their
dependence on U, J are derived from the Bethe-Salpeter
equation for the self-energy Σ within TPSC39, which is
different from the RPA derived expression of U ch,0, Usp,0

only in the ijij-element, i 6= j.56

Our calculations were performed at T=0.015 eV≈174
K since this is the lowest accessible temperature before
spin fluctuations get too strong and the TPSC approxi-
mation is not justified anymore. Nevertheless, we checked
that the results presented below do not change in their
trends up to room temperature (see Supplemental Mate-
rial45).
Results and discussion.- In Fig. 1 we show the TPSC

spectral function A(~k, ω) for LiFeAs along Γ−X−M−Γ
in the two-iron Brillouin zone. To emphasize the changes
in the electronic structure beyond an overall bandwidth
renormalization of about a factor of 2, we also plot the
renormalized DFT bandstructure on top. We observe
that the electronic correlations introduce a downshift of
the hole states around the Fermi level at the Γ-point,
while the electron states at M are slightly shifted up in
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FIG. 1. Interacting spectral function A(~k, ω) within the
TPSC approach for LiFeAs in the two-iron Brillouin zone. For
comparison we show the DFT(GGA) bandstructure renormal-
ized by the average mass enhancement ≈ 2 (dotted lines). We
observe an overall shrinking of the electron and hole pockets
at Γ and M originating from the non-local components of the
self-energy. The center hole pockets at Γ become incoherent
and diffuse due to finite lifetime effects in the Fe 3dxz/3dyz
orbitals.

energy. The inner electron pocket being shifted by -0.1eV
on average while the outer electron pocket is shifted by
only -0.01eV. This leads to an overall shrinking of hole
and electron pockets, corresponding to the “blue/red
shift” seen in ARPES measurements24,26 compared to
the DFT bandstructure. Apart from orbital dependence
the shrinkings are momentum-dependent. For example,
along Γ −X the middle hole pocket shrinks to approxi-
mately 20% of its size compared to the renormalized DFT
bandstructure while all other parts of the Fermi surface
shrink to 80-90% of their original size. The inner hole
pocket at Γ, composed of Fe 3dxz/3dyz orbital charac-
ter (see Fig. 2 (a)), becomes very diffuse at the Fermi
level due to incoherent scattering processes, leading to
a significant reduction of the lifetime of quasi-particle
excitations. This manifests in a broad Fermi surface fea-
ture very similar to the one observed in ARPES24–26,28,30.
The maximum of the spectral function of the two inner
hole pockets at Γ is shifted basically on top of the Fermi
level but retains significant spectral weight at higher and
lower binding energies - the shift being on average 0.18eV
for both while for the outer hole pocket it is 0.1eV. We
expect that the inclusion of spin-orbit coupling, which is
beyond our current approach, will split this feature, effec-
tively pushing one hole band below and the other above
the Fermi level, giving rise to only one central hole Fermi
surface pocket, which would be in very good agreement
with previous ARPES data26,60 as well as de Haas-van
Alphen (dHvA) experiments.40

We can trace back these Fermi surface modifications to
the value of the self-energy at the specific ~k-points in the
Brillouin zone: The largest contribution to the diagonal
elements of the self-energy in Eq. (6) stems from Vabab,

which is peaked at ~k = {(±π, 0), (0,±π)}. Following the
argumentation of Ref. 23, this leads to a negative (posi-

tive) real part of the self-energy in the vicinity of the hole
(electron) pockets and thus to the observed “blue/red
shift” and therefore it is a consequence of non-local spin
fluctuations.

In Fig. 2 we show the orbitally-resolved Fermi sur-
face obtained from DFT (within GGA) (Fig. 2 (a)),
DFT+TPSC (Fig. 2 (b)) and DFT+“local TPSC”
where the momentum dependent TPSC self-energy

Σ(~k, ω) has been approximated by its local component
1
N~k

∑
~k Σ(~k, ω)(Fig. 2 (c)). The DFT Fermi surface re-

veals three well-defined distinct hole pockets centered at
Γ with circular to square shape and two electron pockets
centered at M . As can already be deduced from the spec-

tral function A(~k, ω) in Fig. 1, the Fermi surface expe-
riences appreciable changes due to the TPSC self-energy
contributions. All pockets are reduced in size, with the
remaining spectral weight of the two center hole pockets
of Fe 3dxz/3dyz character at Γ becoming incoherent and
forming a flower-like shape, while the outer hole pocket
of 3dxy character stays coherent as confirmed in ARPES
measurements24,26,40. The electron pockets at M shrink
slightly and broaden, since they are mostly composed of
the most incoherent 3dxz/3dyz as well.

The observed shrinking of the hole and electron pock-
ets deviates significantly from published DFT+DMFT
results, most likely due to the inclusion of non-local cor-
relations in the TPSC approach which go beyond the
DMFT approximation where the self-energy is purely lo-
cal. In order to confirm this assumption we separate
the local from the non-local correlation effects by em-
ploying a DMFT-like approximation on the TPSC self-
energy. We approximate the full momentum-dependent

TPSC self-energy Σ(~k, ω) by its local component and
compare the resulting Fermi surface to the full result in
Fig. 2 (c). The so obtained Fermi surface indeed recovers
the result obtained within published DFT+DMFT15,25,
and, when considering the DFT+DMFT results for the
same model as used in this work (see Supplemental Mate-
rial45), the agreement is almost perfect (compare Fig. 2
(c) and (d)). DFT+DMFT calculations with a differ-
ent double counting scheme22 see a more pronounced -
although coherent- flower-like shape of spectral weight
around Γ but don’t account for the “blue/red shift”. This
shows that when taking into account non-local fluctua-
tions, the local Coulomb interaction gives rise to a signif-
icant momentum-dependent self-energy and can account
for the experimentally observed “blue/red shift”. Inter-
estingly, within the local approximation (local TPSC)
the center hole pockets at Γ become again coherent,
which is also in correspondence with the DMFT result.
This shows that the quasi-particle scattering rate itself is
strongly momentum and orbital dependent, which has in
fact been observed in recent ARPES experiments26,28,
where the inner 3dxz/3dyz derived hole Fermi surface
have been found to be incoherent while the outer 3dxy
hole pocket shows Fermi liquid behavior.

Since Fermi-liquid theory predicts a quadratic energy
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FIG. 2. (a) Orbital-resolved Fermi surface obtained from DFT(GGA) where the dominant orbital characters are dxy (red),
dyz (blue) and dxz (green). Three hole pockets are centered around Γ and two electron pockets around the M point. (b)
Fermi surface from DFT+TPSC. We observe strong incoherence effects on the inner hole and electron pockets. The two
inner hole pockets become very incoherent and form a flower-like shaped region of spectral weight. (c) Fermi surface from

DFT+”local TPSC” where the momentum dependent TPSC self-energy Σ(~k, ω) has been approximated by its local component
1

N~k

∑
~k Σ(~k, ω). In this approximation the Fermi surface recovers well published DFT+DMFT result15,25. (d) DFT+DMFT

Fermi surface for the same model (see Supplemental Material45) as used in this work. We see a strong similiarity to the
DFT+”local TPSC” result in (c).
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FIG. 3. Quasi-particle lifetimes −Z~kΣ′′(~k, ω) along Γ − M
as a function of the binding energy ω (numbers on the right
correspond to positions in Fig.2(c)). We find that the quasi-
particles with dxz/yz character display a linear dependence in
ω while the electron pockets have a quadratic increase with
energy. (See Supplemental Material45)

dependence of quasi-particles’ lifetimes near the Fermi
energy, deviations from this energy dependence are also
a signature for non-Fermi liquid behavior. It is there-
fore compelling to analyze the energy dependencies of
the scattering rate within the TPSC approach. For this,

we present the quasi-particle lifetime −Z~kΣ′′(~k,w) with

Z~k =
1

1− ∂Σ′′(~k,iωn)
∂wn

|iωn→0+

(7)

in Fig. 3 at four different ~k-points in momentum space

following the Γ − M path. Along this path the dom-
inating contributions are (1) dyz hole pocket, (2) dxy
hole pocket, (3) dxy electron pocket and (4) dxz electron
pocket (see Fig. 2(a) and (b)). The energy dependence
of the quasi-particle lifetimes for the dxz/yz electron and
hole pockets (red symbols in Fig. 3) are in good agree-
ment with the results of Ref. 26 with values between
0.025eV and 0.035eV. The energy dependence shows a
very shallow linear behavior (fitted slopes are of the or-
der of 10−3, see Supplemental Material45) similar to the
measurements from Ref. 26. The quasi-particle lifetimes
of the dxy hole and electron pockets (blue symbols in
Fig. 3), in contrast, show at the considered k-points a
quadratic increase in energy as in the ARPES measure-
ments of Ref. 26, suggesting a Fermi-liquid-like behavior.
Although our data was obtained at T ≈ 174K in con-
trast to the T = 25K in Ref. 26, we are confident that
our results are still valid at low temperatures, since for
example in Ba(Fe0.92Co0.08)2As2 it has been found that
the quasi-particle lifetimes for the hole dxz/yz orbitals
showed weak temperature dependence. We also checked

how these results depend on the ~k-path and found that
small translations along the tip of electron pocket (3) re-
veal a linear dependence of the quasi-particle lifetime as
can already be expected since the quasi-particle weight
gets incoherent away from the point (3) (see Fig. 2(b)).

Summary.- In conclusion, we presented a multi-orbital
TPSC scheme that respects local spin and charge sum
rules. This method includes effects of local and non-
local correlations on an equal footing within the validity
of the local approximation of the irreducible 4-point ver-
tex and thus yields momentum- and frequency-dependent
self-energies. We applied this method to the multi-
orbital iron-based superconductor LiFeAs and found that
the non-local components of the self-energy are decisive
to explain its experimentally observed spectral function



5

A(k, ω) and Fermi surface. Taking into account non-
local correlations we observe a “blue/red shift” of the
electronic structure, where the hole bands at the Bril-
louin zone center are lowered in energy, while the elec-
tron bands in the corner of the Brillouin zone are slightly
shifted upwards, resulting in an overall reduction of the
size of the Fermi surface pockets. Overall we find very
good agreement with ARPES and dHvA experiments,
where the “blue/red shift” was first observed. We could
show that our TPSC approach within a local approxima-
tion to the self-energy recovers the DFT+DMFT result
which does not exhibit the “blue/red shift”, both bench-
marking the TPSC result and showing the importance of
going beyond the local picture of DMFT in order to un-
derstand the electronic structure of iron-based supercon-

ductors. Furthermore, we also found a strong momentum
and non-quadratic energy dependence of the electronic
scattering rate, in good agreement with recent ARPES
measurements.
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arXiv:1612.02313 (2016).

19 E. Bascones, B. Valenzuela, and M. J. Calderón, Comptes
Rendus Physique 17, 36 (2016).

20 M. D. Watson, S. Backes, A. A. Haghighirad, M. Hoesch,
T. K. Kim, A. I. Coldea, and R. Valent́ı, Phys. Rev. B 95,

081106(R) (2017).
21 H. Miao, Z. P. Yin, S. F. Wu, J. M. Li, J. Ma, B.-Q. Lv,

X. P. Wang, T. Qian, P. Richard, L.-Y. Xing, X.-C. Wang,
C. Q. Jin, K. Haule, G. Kotliar, and H. Ding, Phys. Rev.
B 94, 201109(R) (2016).

22 R. Nourafkan, G. Kotliar, and A.-M. S. Tremblay, Phys.
Rev. Lett. 117, 137001 (2016).

23 L. Ortenzi, E. Cappelluti, L. Benfatto, and L. Pietronero,
Phys. Rev. Lett. 103, 046404 (2009).

24 S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky,
T. K. Kim, I. V. Morozov, A. N. Yaresko, A. A. Kordyuk,
G. Behr, A. Vasiliev, R. Follath, and B. Büchner, Phys.
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