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We study first passage behaviors in the flow through three-dimensional random fracture networks. Network
and flow heterogeneity lead to the emergence of heavy-tailed first passage time distributions which evolve with
increasing distance between the start and target planes, and transition toward stable laws. Analysis of the
spatial memory of the first passage process shows that particle motion can be quantified stochastically by a time
domain random walk conditioned on the initial velocity data. This approach identifies advective tortuosity, the
velocity point distribution and the average fracture link length as key quantities for the prediction of first passage
times. Using this approach, we develop a theory for the evolution of first passage times with increasing distance
between the start and target planes and the convergence towards stable laws.

First passage times play a central role in a wide variety
of processes that depend on or are conditioned by the no-
tion of first encounters including chemical transformations in
fluctuating environments [1], solute migration in geological
repositories [2], transport in brain microvascular networks [3],
and optimal search strategies [4, 5]. However, the identifi-
cation of measurable media properties and quantification of
their control on first passage times, which is critical for trans-
port predictions in complex media, is often problem depen-
dent and illusive. For hydrodynamic transport in subsurface
fracture networks, and natural and engineered media in gen-
eral, spatial heterogeneity is the determining factor. Natural
fractured media exhibit multi-scale features spanning several
orders of magnitude [6]. It has been ubiquitously found in
field and numerical experiments that first passage times in
such media are characterized by heavy tails, and that trans-
port is typically non-Fickian or anomalous [7–14]. These be-
haviors have been modeled and interpreted through the use
of continuous time and time-domain random walks [15–19],
which account for spatial heterogeneity through a distribution
of mass transfer time scales, as well as multirate mass transfer
approaches [20, 21], which model transport under mass trans-
fer between fast mobile and slow immobile spatial continua.
The complexity of random fracture networks makes it diffi-
cult to link structural and hydrodynamic properties to large
scale transport behaviors [22–24]. Observed power-law tails
in first passage time distributions indicates there may be uni-
versal behavior [7, 8, 10], while observed dependencies on the
injection conditions may indicate otherwise [25, 26].

In this letter, we address these questions for hydrodynamic
transport in three-dimensional random fracture networks by
studying the evolution of first passage time distributions with
increasing distance between the start and target planes. We
investigate spatial memory in terms of streamwise particle ve-
locities, and use this information to construct a stochastic par-
ticle model that accounts for both universal and non-universal

FIG. 1. Illustration of the stochastically generated three-dimensional
discrete fracture network. Fractures are colored according to their
radii, darker colors indicating larger fractures.

aspects of first passage times as a function of the distance be-
tween start and target planes. The model is used to develop a
theory that provides conditions on the Eulerian velocity dis-
tribution for first passage times to converge to a stable den-
sity. We verify these predictions through comparison with the
model and discrete fracture network (DFN) particle tracking
simulations.

We consider a stochastically generated DFN using the DFN-
WORKS software [27, 28]. Fracture radii are sampled from
the truncated power-law distribution pr(r) ∝ (r/r0)

−1−γ for
r0 ≤ r < ru, where r0 is the minimum and ru the maximum
radius. Geological fractured media exhibit hierarchical struc-
tures due to the interaction of different fracture growth pro-
cesses that gives rise to length distributions that can be char-
acterized by power laws [6]. We set here γ = 2.6, ru = 102r0
and consider a cubic domain of size equal to ru. Apertures b
are constant within each fracture but vary between fractures
being positively correlated to the fracture size [29]. The re-
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FIG. 2. First passage time distributions at (black) x1 = 25r0 , (green)
50r0, (orange) 102r0 from the start plane. Time is rescaled by the
advection travel scale τv = r0/v0. Solid lines denote the direct nu-
merical simulations, symbols are the predictions from the stochas-
tic model, the dashed lines shows the t−1−β long time scaling with
β = 3/2.

sulting network shown in Fig. 1 is semi-generic in that it is
not meant to represent a particular field site, but values are
selected to mimic the characteristics of large scale crystalline
rock [6, 30]. The dimensionless density of the network is≈ 14
times larger than the critical percolation density ensuring that
there are multiple paths between the flow boundaries [31, 32].

Pressure gradients in flows through low-permeability frac-
tured rock are typically small enough that the flow is laminar
and the Stokes equation is an appropriate model [33]. Further-
more, the large contrast between fracture length and aperture,
typically several orders of magnitude, allows for the Stokes
equation to be reduced to the Reynolds equation [34]. Flow
through the DFN is driven by a constant mean pressure gradi-
ent ∇P across the domain aligned with the 1-axis of the coor-
dinate system. In the following, flow velocities are scaled by
the characteristic velocity v0 = b2

0|∇P|/12µ , where b0 is the
minimum fracture aperture and µ dynamic viscosity. Note
that in the Stokes regime velocities scale linearly with the
pressure difference and thus with the characteristic velocity.
Details of network generation, numerical flow simulations and
specific flow conditions are provided in [35], which includes
Refs. [36–43].

Advective transport through the DFN is simulated using
particle tracking. The trajectory x(t;a) of a particle starting
at a at time t = 0 is given by the kinematic relationship

dx(t,a)
dt

= u[x(t,a)]. (1)

Although apertures are uniform within each fracture, u(x)
varies within each fracture plane due to the location of in-
tersections, boundary conditions, and fracture position within
the entire network. One million particles are inserted and
tracked through the system. The initial particle distribution
is flux-weighted, this means the particle density at a posi-
tion in the injection plane ρ(a) is weighted by the magnitude
ve(a) = |u(a)| of the local flow velocity. At fracture inter-

sections, particles are distributed proportional to the outgoing
fluxes. This means a complete mixing rule is applied. The
first passage time to cross a target plane at a linear distance
x1 from the inlet is ta(x1;a) = min[t|x1(t,a) ≥ x1]. The prob-
ability density function (PDF) f (t;x1) of first passage times
sampled over the ensemble of particles is

f (t;x1) =
∫

daρ(a)δ [t− ta(x1;a)], (2)

where δ (t) is the Dirac delta. Figure 2 shows f (t;x1) from
the DFN simulations at three target planes within the domain
(solid lines). Time is rescaled by the characteristic advective
time τv = r0/v0. We observe relatively abrupt early arrivals at
distances close to the start plane, which become smoother as
distance increases. The late time behavior is characterized by
power-law tails as t−1−β with β = 3/2 at all distances.

In order to understand these behaviors, we examine the in-
dividual particle motion, and construct a model that accounts
for the physical processes at the origin of the observed power-
law scaling. Figure 3 shows a particle’s velocity magnitude
and fractures visited along the trajectory. This particle passes
through 16 fractures that are denoted with a different shaded
band. On the sub-fracture scale, the velocities fluctuate mod-
erately. In contrast, major changes in velocity typically occur
as a particle transitions between fractures. Thus, the number
of major velocity transitions a particle makes depends on the
number of fractures through which it passes; a topological and
geometric property of the network.
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FIG. 3. A particle’s velocity magnitude vs sampled along a trajectory.
The particle passes through 16 fractures. Each fracture, with differ-
ent radii and permeability, is denoted with a different shaded band.
Particle velocities fluctuate moderately on the sub-fracture scale, but
there are major velocity changes as particles transition between frac-
tures.

These observations suggest a stochastic approach that mod-
els particle transitions over the characteristic spatial fluctua-
tion scale of particle velocities. Velocities decorrelate as par-
ticles transition between fractures. Thus, the velocity corre-
lation along pathlines can be estimated by computing the dis-
tance between centers of intersections within fracture planes.
For this network, the mean distance between intersections is
153 m. This hydrodynamically independent value sets the
scale of velocity transitions denoted by lc. Thus particle
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FIG. 4. (top panel) Illustration of (empty circles) steady Lagrangian
velocity PDF ps(v), (full circles) initial velocity PDF p0(v) and
(solid line) Burr distribution (3). (bottom panel) Tortuosity as a func-
tion of streamwise distance. The full circles correspond to the tortu-
osity values at x1 = 25,50,102r0 .

motion can be represented by a time-domain random walk
(TDRW) type approach that advances the particle position by
the constant distance lc along the trajectory, for which it takes
the transition time τ = lc/vs, where vs is the velocity mag-
nitude sampled equidistantly along a particle path [44]. This
approach assumes Lagrangian ergodicity, which means that
the velocity statistics sampled between particles and along
streamlines are the same.

The steady state distribution ps(v) of vs is characterized by
two power-law regimes, which can be attributed to primary
flow channels where the highest velocities exist and secondary
structures where low velocities are present [45]. Such a distri-
bution is well modeled by the Burr distribution

ps(v) =
α

vc

(v/vc)
β−1

[1+(v/vc)β ]α/β−1 , (3)

with α = 1.7, β = 1.5 and vc = 2.48v0, see Figure 4. Under
ergodic conditions, ps(v) is related to the PDF pe(v) of the
Eulerian velocity magnitude ve(x) through flux-weighting as
ps(v) = vpe(v)/〈ve〉 [26, 44, 46]. This relationship connects
flow and transport attributes. Furthermore, under ergodic con-
ditions the PDF of initial velocities p0(v) is equal to the steady
velocity PDF ps(v) [44]. The differences illustrated in Fig-
ure 4 are due to the finite size of the start plane. The particle
velocity statistics evolve from the initial to the steady state dis-
tribution. Nonetheless, both ps(v) and p0(v) show the power-
law behavior ∝ (v/vc)

β−1 at low velocities, which determines
the late time scaling of the particle travel time distributions, as
shown in the following.

Note that this approach models the stochastic particle mo-

tion along a trajectory, which is tortuous as a result of the
complex network and flow structure. This means the distance
traveled is not equal to the streamwise distance between the
start and the target planes. We account for this feature in terms
of the advective tortuosity χ(x1), the ratio between the aver-
age trajectory length at a given linear distance, which is illus-
trated in Figure 4. In the limit of x1→ ∞, χ(x1) converges to
χ∞ = 〈ve〉/〈u1(x)〉 [47], which here is χ∞ = 2.7. The average
trajectory length from the start to the target plane at x1 = 103

m is 2.4 ·103 m. This means, tortuosity is not stationary at this
distance. Furthermore, the average number of transitions for
a particle to cross the domain is 2.4 ·103/lc ≈ 16.

The first passage time ta(x1) derived from the TDRW ap-
proach is

ta(x1) =
d`(x1)/lce−1

∑
i=0

τi, τi =
lc
vi
, (4)

where `(x1) = χ(x1)x1 is the average trajectory length. The
ceiling function d`(x1)/lce= nv(x1) counts the number of dif-
ferent velocities experienced by the particle until first passage
at x1. The first time increment τ0 is distributed according to
ψ0(t) = lc p0(lc/t)/t2 where p0(v) is the velocity PDF at the
inlet plane. The random values τi for i ≥ 1 are identical and
independently distributed according to ψs(t) = lc ps(lc/t)/t2,
where ps(v) is the steady state velocity distribution.

Figure 2 compares the predictions of the model with the
DFN simulations. The stochastic approach predicts both the
tailing behavior and peak times, while the early arrivals at
short distances between start and target plane are not cap-
tured. In fact, the first passage time PDF shows relatively
abrupt early arrivals at short distances. This behavior can be
traced back to the fact that, at short distances the early arrivals
are due to only a few long and fast fractures that connect start
to target planes. In this sense, early arrivals are not ergodic as
particles have only access to a very limited part of the veloc-
ity spectrum, while the TDRW approach samples velocities at
each step from the full velocity distribution. The long time
behavior on the other hand is due to particle motion along
more tortuous paths that consist of larger numbers of slow
and short fractures. The particles that contribute to the tails,
in this sense form an ergodic subset, which is captured by the
TDRW model. With increasing distance from the start plane,
xc� lc, more fractures contribute also to early arrivals, which
then become ergodic. Thus, particle motion and first passage
times are well represented by the stochastic particle motion.

The construction of this stochastic model and its validation
against the DFN simulations provides the starting point to de-
velop a theory of long term properties of first passage times
in random fracture networks. The model states first passage
times as the sums of independent random time increments,
which is equivalent to construction of the first passage time
distribution f (t;x1) as the nv-fold convolution of the transi-
tion time distributions ψ0(t) and ψs(t). In Laplace space, this
can be written as

f ∗(λ ;x1) = f ∗nv(λ ) = ψ
∗
0 (λ )ψ

∗
s (λ )

nv−1, (5)
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where asterisk denotes Laplace transformed quantities and λ

the Laplace variable. Also note, that the characteristic tails of
the velocity distributions (cf. small velocities in Fig. 4) show
that the transition time distributions ψ0(t) and ψs(t) behave
asymptotically as t−1−β . In fact, the Burr distribution (3) for
the steady state velocity PDF ps(v) implies that

ψs(t)∼
α

τc
(t/τc)

−1−β , (6)

for t� τc = lc/vc. Thus, for λτc� 1, the Laplace transforms
of ψ0(t) and ψs(t) can be expanded as

ψ
∗
k (λ )≈ exp[−λ 〈τk〉+ak(λτc)

β + . . . ], (7)

where k = 0,s, 〈τk〉 is the mean transition time and ak a con-
stant. The dots indicate contributions of order λ 2. Using the
approximation (7) for λτc� 1 we obtain

f ∗n (λ ) = exp(−λ 〈tn〉)g∗n
(

λ 〈tn〉1/β

)
, (8)

where [35]

g∗n(λ ) = exp
[

a0 +(n−1)as

〈tn〉
(λτc)

β + . . .

]
. (9)

In the limit n → ∞, the g∗n(λ ) converges toward gβ (λ ) =

exp
[
as(λτc)

β/〈τs〉
]

because higher order contributions go to
zero at least as fast as n(β−2)/β [35]. This means, for n� 1,
g∗n(λ ) in (8) can be replaced by g∗

β
(λ ). By inverse Laplace

transform of the resulting expression, we then obtain the fol-
lowing scaling form for fn(t)

fn(t) =
gβ

[
(t−〈tn〉)/〈tn〉1/β

]
〈tn〉1/β

, (10)

where gβ (y) is a stable density that is totally skewed to the

right [35, 42, 43]. This implies that φ(y,x1) = f [t(y),x1]τ
1/β
m

with y = (t − τm)/τ
1/β
m and τm = 〈ta(x1)〉 converges toward

gβ (y) for x1� `c.
Figure 5 (top panel) shows the DFN data and TDRW pre-

diction rescaled according to φ(y,x1). The data in the tails col-
lapse, which indicates the validity of the proposed reasoning.
Note the TDRW approach identifies the first passage times as
sums of independent random variables. Thus, the observed
convergence to a stable density is the result of the general-
ized central limit theorem [43, 48] because the distributions
of time increments τ are heavy tailed. This is due to the be-
havior of the velocity distribution as ps(v) ∝ (v/vc)

β−1 with
β < 2 for small velocities v < vc. For β > 2, the first pas-
sage time distributions would converge to a stable distribution
with a stability parameter 2, this means a Gaussian distribu-
tion. Thus, the theory identifies the features of the velocity
point distribution that lead to the emergence of heavy-tailed
first passage time distributions. Examples for networks with
different exponents β that emphasize the robustness of these
results are given in [35].
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FIG. 5. (top panel) The predicted Lévy stable density (solid blue)
and rescaled first passage time PDFs from the (symbols) DFN simu-
lations and (lines) TDRW at distances (black) 25r0, (green) 50r0 and
(orange) 102r0. The dashed and dash-dotted blue lines show TDRW
predictions at distances 103r0 and 104r0 from the inlet. The TDRW
uses 107 particles. (bottom panel) Kullback-Leibler divergence be-
tween the rescaled first passage time distributions and the Lévy sta-
ble density plotted as a function of number of convolutions. The full
circles correspond to the distributions shown in the top panel.

The convergence towards the stable law depends on the
number of independent transition times and thus velocities
sampled along the path between start and target planes as il-
lustrated in Figure 5. The convergence behavior is further
investigated in the TDRW model, which is used to extrapo-
late the first passage time distributions to distances beyond
the size of the study domain. The tails converge to the sta-
ble limit law for distances larger or equal than 104 m, which
corresponds to around 200 convolutions, while the early time
behavior converges at slower rate towards the Lévy stable dis-
tribution gβ (y). The rate of convergence is quantified in terms
of the Kullback-Leibler divergence dkl(n) [49] shown in the
bottom panel of Figure 5. It is fit by a decaying power-law
dkl(n)∼ n−2/3, which confirms convergence of f (t;x1) toward
the stable limit law.

The presented analysis and theory identify the network
properties that control first passage times in random three-
dimensional fracture networks. Network topology and het-
erogeneity control the emergence of heavy-tailed first passage
time distributions, which are constructed as convolutions of
the distributions of transition times over hydrodynamically in-
dependent network features. The velocity point distribution
controls the tailing behavior and thus the asymptotic stable
density to which the first passage times converge. The con-
vergence toward the universal stable behavior is controlled by
the number of transitions between fractures along pathways
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and thus by the average fracture link length, and the tortuos-
ity of trajectories, which are measures of the network topol-
ogy. Despite the apparent complexity of three-dimensional
random fracture networks, the first passage behavior and the
emerging heavy tailed densities, can be understood and pre-
dicted in terms of only a few network and flow characteris-
tics, which can be determined from transport-independent net-
work attributes. The integration of these features in a TDRW
modeling approach allows for the prediction of first passage
time distributions at asymptotic and preasymptotic distances
between start and target planes.
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