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Complex distribution networks are pervasive in biology. Examples include nutrient transport in
the slime mold Physarum polycephalum as well as mammalian and plant venation. Adaptive rules
are believed to guide development of these networks and lead to a reticulate, hierarchically nested
topology that is both efficient and resilient against perturbations. However, as of yet no mechanism
is known that can generate such networks on all scales. We show how hierarchically organized
reticulation can be constructed and maintained through spatially correlated load fluctuations on a
particular length scale. We demonstrate that the network topologies generated represent a trade-off
between optimizing transport efficiency, construction cost, and damage robustness and identify the
Pareto-efficient front that evolution is expected to favor and select for. We show that the typical
fluctuation length scale controls the position of the networks on the Pareto front and thus on the
spectrum of venation phenotypes.

Complex life would be inconceivable without biological
fluid distribution networks such as animal vasculature,
plant xylem and phloem, the network of fungal mycelia or
the protoplasmic veins of Physarum polycephalum. These
networks distribute oxygen and nutrients, remove waste
and serve as long range communication pathways. In
mammals, the vast spectrum of venation network pheno-
types ranges from predominantly tree-like networks such
as the large veins and arteries that service entire organs
to highly reticulate capillaries within the organs such as
in the brain or the liver. In plants, leaf network phe-
notypic variability even within a single organism can be
large, but typically the hierarchical structure and retic-
ulation are roughly conserved. However, within a sin-
gle family there can be considerable variation [1]. It is
therefore natural to ask whether there might be a single
developmental mechanism at play that can generate and
interpolate between the different archetypes on this phe-
notypic spectrum of vascular networks. Then, evolution
would only need to select for a few parameters in order
to tune the network phenotype for its function. Here, we
theoretically identify fluctuations during development as
such a mechanism, and pinpoint networks on a Pareto
front possessing optimal trade-offs between hydraulic ef-
ficiency, damage resilience, and cost, as evolutionarily
desirable.

Many frequently competing factors influence which
particular phenotypes are favored by natural selection.
Therefore, it is to be expected that the eventual physical
form of an organism is shaped by trade-offs between dif-
ferent requirements. Pareto optimality identifies those
phenotypes that strike optimal trade-offs between ob-
jectives: The Pareto front is the subset of phenotypes
where performance at one objective can not be increased
without decreasing performance at another {Fig. 1 (b),
Ref. [2]}. One can assume that the phenotypes ob-
served in nature are found approximately on some rel-
evant Pareto front because any other trade-off could be

improved upon and is therefore evolutionarily selected
against, given otherwise fixed conditions [3].

In plants, where a well preserved fossil record of the
venation exists, the fast transitions between reticulate
and non-reticulate patterns over evolutionary time are
evidence for an easily tunable mechanism generating vas-
cular phenotypes [4, 5]. These transitions can also be
effected artificially by single gene knockouts [6, 7] or
small changes in phytohormone concentrations [8]. In
the case of animals, often the positions and dimensions
of the largest vessels (such as the aorta) are genetically
predetermined and fixed. However, smaller vessels are
too numerous to be efficiently genetically encoded and
are believed to develop in a self-organized fashion [9–11].
The abstract mechanisms governing self-organization of
vasculature in plants and animals appear to be univer-
sal [12]. For instance, in plant leaves, auxin canalization,
involving flow of a chemical morphogen, is believed to
guide development of the network pattern {Refs. [13–17],
Fig. 1 (c,d)} and in animal vasculature, vessels respond
to wall shear stress [10, 18–21]. Generically, these mech-
anisms involve a process that is able to remodel an initial
mesh of veins according to the flow of blood (in animals),
or cells connected by carrier proteins according to a mor-
phogen (in plants). If the flow is large, vessels adapt by
increasing their diameter; unused connections die out.
This process has been observed directly in animals [22]
and indirectly in plants [23].

Common to the vascular network development of both
plants and animals, the dynamics of the hydraulic vessel
conductivities Ke can be modeled by an equation of the
form [12, 21, 24–26],

dKe

dt
= a

(F 2
e )
β

Ke
α−1 − bKe + c e−rt, (1)

where a, b, c and r are non-negative adaptation param-
eters and α ≥ 1, β > 0. Often, α = 1 and c = 0. The
dynamical steady states then correspond to different net-
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FIG. 1. (a) Network model of liquid transport. Edges e of
length Le carry currents Fe. At each node i, a net current Si

is drawn from the network. The net current Si models local
sources and sinks. (b) The Pareto front (orange) is the set of
points out of all possible phenotypes (gray) for which perfor-
mance can not be improved at both objectives simultaneously.
For any point not on the Pareto front, e.g., (i), a different
point can be found, e.g., (ii), that has better performance at
both objectives. For a point on the Pareto front, like (iii), this
is not possible. The endpoints of the Pareto front (stars) are
functional archetypes. (c) Leaf veins of Acer platanoides near
the “reticulate archetype” identified in this paper. (d) Leaf
veins of Protium dawsonii show many freely ending veinlets,
similar to what is found near the “tree archetype” identified
in this paper.

work topologies.

Equation (1) describes a local positive feedback mech-
anism. Conductivities Ke grow as controlled by the mag-
nitude of a when the current Fe through their vessel is
large, and they decay on a characteristic time scale b−1

when it is small. The parameter c may be interpreted
as the presence of some growth factor such as VEGF
in the case of mammalian vasculature or background
production of auxin transporting proteins in the case of
plant leaves [25]. Potential flow is assumed throughout
{Fig. 1 (a), Supplemental Material [27]}. An explicit
time-dependence may exist during development, for in-
stance due to growth of the surrounding tissue, or gradual
depletion or degradation of the growth factor over a time
scale r−1 [12].

The generic dynamics of Eq. (1) is characterized by
two phases. First, the background production term dom-
inates and produces a homogeneous network. Then, as
background production becomes increasingly suppressed
due to the exponential decay term, vascular adaptation
takes over, generating veins in a hierarchical fashion:
thick, main veins first and successively thinner veins later

while pruning unused connections, comparable to vas-
cular plexus development [18, 22, 28, 29]. The compe-
tition between background production and adaptation
leads to hierarchically ordered steady-state networks [12],
which are always topological trees [30, 31]. While non-
hierarchical reticulation can be achieved by postulating
new chemicals [32], we now introduce a model of adap-
tation to fluctuating load that can produce hierarchi-
cal reticulation. Such load fluctuations are common in
animals (for instance Ref. [33]) and recent work points
toward their existence in plants during development as
well [23].

Assuming that the time scale on which fluctuations oc-
cur is much smaller than that of adaptation and that fluc-
tuations are characterized by approximately static states
between which the system switches quickly, we replace
the squared currents in Eq. (1) by a fluctuation aver-
age [19, 24, 34–38],

F 2
e → 〈F 2

e 〉 =
1

N

∑
state i

(
F (i)
e

)2
. (2)

Here, the vector of fluctuating states F(i) = (F
(i)
e ) repre-

sents the flows in the network for a particular vector of

source terms S(i) = (S
(i)
j ), and the summation performs

an ensemble average for a given set of fluctuating states.
Dynamical steady states then can correspond to minima
of optimization models [24, 34, 35].

We generalize these approaches to include collectively
produced fluctuations by using the sources,

S
(i)
j

Ŝ
= δj0 − (1− δj0) f

(
‖xj − xi‖

σ

)
, (3)

where xi is the position of node i, σ is the scale over which

the source strength varies, and
∑
j S

(i)
j = 0. The total

in- and outflow is Ŝ. In the rest of this paper we consider
Gaussian sources (f(x) ∼ e−x

2/2). Other f(x) lead to
qualitatively similar results (Supplemental Material [27]).
Uncorrelated fluctuations are obtained as σ → 0 and
lead to reticulation, but not to significant hierarchical
ordering, similar to Fig. 2 (a,f).

We numerically solve a dimensionless form of Eq. (1),

dK̃e

dt̃
= 〈F̃ 2

e 〉β − K̃e + κ e−t̃/ρ, (4)

where the tilde denotes dimensionless quantities (Supple-
mental Material [27]). Following Ref. [12] we set α = 1,
with other values leading to similar conclusions. The
control parameters are the dimensionless background
strength κ = (c/a)Ŝ−2β , the decay timescale ρ = b/r,
and the fluctuation scale σ. We further fix the nonlinear-
ity at β = 2/3, which leads to the same steady-state net-
works as shear-stress adaptation [24]. This value also cor-
responds to a total network volume constraint [12, 35].
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FIG. 2. The variety of network phenotypes that can be produced with a locally adaptive fluctuating load model. All examples
lie on the Pareto front of efficient networks (Fig. 3), thus representing different trade-offs between baseline power dissipation,
cost, and damage robustness. The number of loops and thus damage robustness increases to the right, the value of σ increases
from 0.5 to 4.0 to the right. The Pareto front corresponds to the whole spectrum of “natural” reticulate networks, from highly
hierarchical trees, fragile but cheap, to highly robust reticulate, expensive networks. (a)–(e) The inlet is at the center. (f)–(j)
The inlet is at the left side.

All networks start from the same disordered mesh with
445 nodes and 1255 edges. We either place a single inlet
at the center of the network, similar to the retina, or at
the boundary, similar to a leaf. The conductivities are
initialized with random positive numbers, and the scale
parameter σ is measured in units of the mean edge length
L̂.

The interplay between background and decay param-
eters, fluctuation scale, and boundary conditions leads
to a whole spectrum of networks, many of them quali-
tatively resembling the networks found in dicot and fern
leaves, or the vasculature of the retina or the brain. They
appear to reproduce well the hierarchical structure seen
in real modern plants and animals (Fig. 2). Reticulation
in particular is controlled by the fluctuation scale σ. For
small σ � L̂, the steady state networks are highly retic-
ulate, similar to those obtained in Refs. [24, 35], and
have little hierarchy [Fig. 2 (a),(b),(f),(g)]. As σ be-
comes comparable to or greater than L̂, the networks
gradually lose reticulation and gain hierarchical struc-
ture, independent of the chosen inlet position [Fig. 2 (c)–
(e), (h)–(j)]. Intuitively, different large-scale sources S(i)

centered at nearby nodes overlap almost completely, and
effectively act as a single state. Thus, the average is over
only a few effective, large-scale sources, which leads to
fewer effective fluctuations and therefore less reticulation.
We develop a unified framework for arbitrary fluctuating
sources by noting that the average flow can be rewritten

as the weighted mean (Supplemental Material [27]),

〈F 2
e 〉 =

1

N

∑
i

(
F (i)
e

)2
=
∑
j

ρj

(
R(j)
e

)2
, (5)

where the ρj are the eigenvalues of the covariance matrix
1
N

∑
k S

(k)(S(k))>, and the R
(j)
e are the flows induced

by the associated eigenvectors as sources. For values of
σ � L̂, the collective sources themselves become highly
correlated to each other, and the source covariance ma-
trix is characterized by only a few dominant eigenvalues,
with the vast majority negligibly small, independent of
the specific form of f(x) (Supplemental Material [27]).
Armed with this model, we proceed to ask which of the
network topologies it can produce may be favored by nat-
ural selection. We specialize to a single inlet at the center,
with other inlet positions leading to qualitatively similar
results (Supplemental Material [27]).

Hydraulic efficiency, low cost, and robustness are im-
portant but competing requirements, such that we ex-
pect that natural selection strikes a trade-off between
them. As a measure of network efficiency, we consider
the hydraulic power dissipation calculated under non-
fluctuating conditions, E =

∑
e LeF

2
e /Ke, where the

flows are computed for a single inlet and uniform sinks.
The rationale is that during nominal operation, fluctua-
tions are expected to be small, with large fluctuations to
be expected during development. Next, the network cost,
C =

∑
e LeK

γ
e , where γ < 1 models an economy of scale,

measures the amount of material investment that goes
into constructing the network. This should be minimized
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FIG. 3. Geometry of the Pareto front of adaptive distribution networks. We plot the phenotypic space of networks obtained
from parameter values ρ ∈ {1, 10, 100}, κ ∈ {1, 0.1, 0.01}, σ ∈ [0.1, 5], α = 1, β = 2/3 as an example of the phenotypic space
that can be reproduced using the model. We calculate the Pareto front for simultaneous minimization of power dissipation,
network cost, and percolation penalty. The data was scaled to zero mean and unit variance in each objective. (a) The data set,
colors indicate the value of σ. The Pareto front is in red, and the non-Pareto networks from Fig. 4 are in blue. (b) Principal
component analysis (PCA) embedding of the Pareto front from (a). 91% of the variance is encoded in the first PCA coordinate,
suggesting that the front is approximately one-dimensional. The first PCA coordinate (PCA 1) is approximately parametrizes
the Pareto front. Red points correspond to the networks from Fig. 2 (a–e). (c) For all combinations (ρ, κ, σ) on the Pareto
front P we hold ρ and κ fixed and vary σ. For a wide range of σ, the average distance dP (x) = minp∈P ‖x− p‖ from the Pareto
front is well below the mean 〈dP 〉, suggesting that phenotypes remain close to the Pareto front (blue curve, shaded region is
one standard deviation over combinations of ρ, κ). Varying σ moves linearly along the Pareto front parametrized by PCA 1
(orange curve). Thus, σ approximately parametrizes the Pareto front. Similarly varying ρ (d) or κ (e) while holding the other
parameters fixed may lead to phenotypes close to the Pareto front for large ρ and all κ, but the position on the front PCA 1
is random. Thus, ρ and κ can not be used to parametrize the Pareto front.

by any organism that efficiently uses its resources. We set
γ = 1/2, which corresponds to a cost proportional to the
total vessel volume, or equivalently, total material used to
construct the network. Finally, we consider a percolation
penalty as a measure of network robustness, quantifying
the cost of losing part of the vasculature to damage. We
choose the expected fraction of perfused area lost upon
removing an edge, Â = (1/Ne)

∑
eAe/Atot, where Ae is

the area of the network that becomes disconnected from
the source upon removal of edge e, Atot is the total area
of the network, and Ne is the number of edges. Efficient
network phenotypes must minimize the cost C, the power
dissipation E, and the percolation penalty A.

Observations of real networks, for instance in leaves,
reveal that many treelike components exist and that they
are important for transport [39]. This means that al-
though the percolation penalty is minimized, it is not ex-
pected to be perfectly zero. Except for very small σ � L̂
and very large σ � L̂, network phenotypes obtained from
our model generically exhibit these small treelike compo-
nents within loops [Figs. 2, 4].

We scanned a portion of the parameter space and com-
puted the three network measures for a data set of steady
states of the adaptation dynamics. The steady state
networks form a dense cloud in the space of network
measures [Fig. 3 (a)]. Computing the Pareto front us-
ing the algorithm from Ref. [40] and analyzing its ge-
ometry using Principal Component Analysis (PCA) re-
veals an approximately one-dimensional line of points
{Fig. 3 (b), Supplemental Material [27]}. Fixing ρ and
κ, the parameter σ approximately parametrizes networks
on the Pareto front [Fig. 3 (c–e)], such that σ can be
used to tune optimal trade-offs between the three ob-

jectives. The endpoints of the Pareto front correspond
to functional archetypes [3], on one end low-cost, fragile
and non-reticulate, high dissipation networks (σ � L̂,
tree archetype), and on the other end high-cost, robust
and fully reticulate, low dissipation networks (σ � L̂,
reticulate archetype) [Figs. 2, 3]. For small σ � L̂,
most networks lie close to the front, whereas for large
σ � L̂, there is greater variability, and many networks
lie far from the front [Fig. 3 (a),(b)]. Defining a distance
dP (x) = minp∈P ‖x − p‖ from the Pareto front P and
rescaling all network measures to have unit variance and
mean zero so as to bring them to the same scale, the
mean distance from the front is 〈dP 〉 ≈ 0.24. The Pareto
front comprises 14% of all networks. From the remain-
ing ones, 70% lie closer than average to the front and
30% lie further than average from the front. Tuning κ
by itself without fixing the other parameters has little

(a)

= 2.1

(b)

= 5.0

FIG. 4. Network phenotypes not lying on the Pareto front
show less hierarchical organization for the same amount of
reticulation than their Pareto optimal counterparts. In both
networks, κ = 1.0, ρ = 1.0. (a) E = 6.0, A = 0.48, C = 47.0.
(b) E = 10.8, A = 7.73, C = 32.8.
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effect on the distance of networks from the Pareto front.
However, ρ & 10 or 0.5 . σ . 3 can generically drive
the network phenotypes close to the front (Supplemen-
tal Material [27]). Non-Pareto optimal phenotypes often
show branching with parallel instead of roughly perpen-
dicular veins (Fig. 4). Open, non-hierarchical venation
patterns similar to those of some networks off the Pareto
front can be found in in the leaves of the evolutionarily
archaic Ginkgo biloba tree {Fig. 4 (b), Refs. [41, 42]}.

We have shown that a simple, easily tunable mecha-
nism is able to produce an entire spectrum of phenotypic
variation in vascular networks. The shape of networks
on this spectrum can be rationalized by the interplay
between flow fluctuations affecting developmental pro-
cesses, and natural selection of parameters that lead to
phenotypes on a Pareto front of optimal trade-offs be-
tween efficiency, cost, and resilience. The networks on
the Pareto front are reminiscent of modern natural leaf
or animal vasculature, suggesting that natural networks
may be subject to the trade-offs we consider. Networks
away from the Pareto front generically exhibit less hi-
erarchical organization and less resemblance to modern
plants and animals. Out of the three control parame-
ters of our model, only the fluctuation scale is highly
correlated to the position on the Pareto front and thus
to the position on the spectrum of vascular networks.
This could allow natural selection to more easily adjust
for a given needed functionality, but also to re-use the
same genetic pathway to construct networks with differ-
ent functionality in the same organism. Beyond biology,
engineered transport networks such as electrical power
grids are often subject to similar trade-offs, such that we
expect that our analysis will be useful here as well.

EK acknowledges support by NSF Award PHY-
1554887, IOS-1856587, the University of Pennsylvania
Materials Research Science and Engineering Center (MR-
SEC) through award DMR-1720530, the University of
Pennsylvania CEMB through award CMMI-1548571, and
the Simons Foundation through award 568888 and the
Burroughs Welcome Career Award.

∗ henrikr@mit.edu
† katifori@sas.upenn.edu

[1] Henrik Ronellenfitsch, Jana Lasser, Douglas C. Daly,
and Eleni Katifori, “Topological Phenotypes Constitute a
New Dimension in the Phenotypic Space of Leaf Venation
Networks,” PLOS Computational Biology 11, e1004680
(2015), arXiv:1507.04487.

[2] Kaisa Miettinen, Nonlinear Multiobjective Optimization,
International Series in Operations Research & Manage-
ment Science (Springer US, 1999).

[3] O. Shoval, H. Sheftel, G. Shinar, Y. Hart, O. Ramote,
A. Mayo, E. Dekel, K. Kavanagh, and U. Alon, “Evolu-
tionary Trade-Offs, Pareto Optimality, and the Geome-
try of Phenotype Space,” Science 336, 1157–1160 (2012),

arXiv:9605103 [cs].
[4] T. J Givnish, J. C. Pires, S. W Graham, M. A McPher-

son, L. M Prince, T. B Patterson, H. S Rai, E. H Roalson,
T. M Evans, W. J Hahn, K. C Millam, A. W Meerow,
M. Molvray, P. J Kores, H. E O’Brien, J. C Hall, W. J.
Kress, and K. J Sytsma, “Repeated evolution of net ve-
nation and fleshy fruits among monocots in shaded habi-
tats confirms a priori predictions: evidence from an ndhF
phylogeny,” Proceedings of the Royal Society B: Biolog-
ical Sciences 272, 1481–1490 (2005).

[5] Benjamin Blonder, Bruce G. Baldwin, Brian J. Enquist,
and Robert H. Robichaux, “Variation and macroevolu-
tion in leaf functional traits in the Hawaiian silversword
alliance (Asteraceae),” Journal of Ecology 104, 219–228
(2016).

[6] Quintin J Steynen and Elizabeth A Schultz, “The
FORKED genes are essential for distal vein meeting in
Arabidopsis.” Development (Cambridge, England) 130,
4695–4708 (2003).

[7] Francine Carland and Timothy Nelson, “CVP2- and
CVL1-mediated phosphoinositide signaling as a regulator
of the ARF GAP SFC/VAN3 in establishment of foliar
vein patterns,” Plant Journal 59, 895–907 (2009).

[8] Thomas Berleth, Jim Mattsson, and Christian S.
Hardtke, “Vascular continuity and auxin signals,” Trends
in Plant Science 5, 387–393 (2000).

[9] F le Noble, V Fleury, A Pries, P Corvol, A Eichmann,
and R S Reneman, “Control of arterial branching mor-
phogenesis in embryogenesis: go with the flow.” Cardio-
vascular research 65, 619–28 (2005).

[10] Haymo Kurz, “Physiology of angiogenesis.” Journal of
Neuro-Oncology 50, 17–35 (2001).

[11] Thi-Hanh Nguyen, Anne Eichmann, Ferdinand Le No-
ble, and Vincent Fleury, “Dynamics of vascular branch-
ing morphogenesis: The effect of blood and tissue flow,”
Physical Review E 73, 061907 (2006).

[12] Henrik Ronellenfitsch and Eleni Katifori, “Global Op-
timization, Local Adaptation, and the Role of Growth
in Distribution Networks,” Physical Review Letters 117,
138301 (2016).

[13] Richard S. Smith and Emmanuelle M. Bayer, “Auxin
transport-feedback models of patterning in plants,”
Plant, Cell & Environment 32, 1258–1271 (2009).

[14] Enrico Scarpella, “Control of leaf vascular patterning by
polar auxin transport,” Genes & Development 20, 1015–
1027 (2006).

[15] Carla Verna, Megan G. Sawchuk, Nguyen Manh Linh,
and Enrico Scarpella, “Control of vein network topology
by auxin transport,” BMC Biology 13, 94 (2015).

[16] Francois G. Feugier, A. Mochizuki, and Y. Iwasa, “Self-
organization of the vascular system in plant leaves: Inter-
dependent dynamics of auxin flux and carrier proteins,”
Journal of Theoretical Biology 236, 366–375 (2005).

[17] Chrystel Feller, Etienne Farcot, and Christian Mazza,
“Self-Organization of Plant Vascular Systems: Claims
and Counter-Claims about the Flux-Based Auxin Trans-
port Model.” PloS one 10, e0118238 (2015).

[18] Anne Eichmann, Li Yuan, Delphine Moyon, Ferdinand
Lenoble, Luc Pardanaud, and Christiane Breant, “Vas-
cular development: from precursor cells to branched ar-
terial and venous networks,” The International Journal
of Developmental Biology 49, 259–267 (2005).

[19] Dan Hu, David Cai, and Aaditya V Rangan, “Blood
vessel adaptation with fluctuations in capillary flow dis-

mailto:henrikr@mit.edu
mailto:katifori@sas.upenn.edu
http://dx.doi.org/10.1371/journal.pcbi.1004680
http://dx.doi.org/10.1371/journal.pcbi.1004680
http://arxiv.org/abs/1507.04487
https://books.google.com/books?id=ha_zLdNtXSMC
http://dx.doi.org/ 10.1126/science.1217405
http://arxiv.org/abs/9605103
http://dx.doi.org/10.1098/rspb.2005.3067
http://dx.doi.org/10.1098/rspb.2005.3067
http://dx.doi.org/ 10.1111/1365-2745.12497
http://dx.doi.org/ 10.1111/1365-2745.12497
http://dx.doi.org/10.1242/dev.00689
http://dx.doi.org/10.1242/dev.00689
http://dx.doi.org/10.1111/j.1365-313X.2009.03920.x
http://dx.doi.org/ 10.1016/S1360-1385(00)01725-8
http://dx.doi.org/ 10.1016/S1360-1385(00)01725-8
http://dx.doi.org/10.1016/j.cardiores.2004.09.018
http://dx.doi.org/10.1016/j.cardiores.2004.09.018
http://dx.doi.org/10.1103/PhysRevE.73.061907
http://dx.doi.org/10.1103/PhysRevLett.117.138301
http://dx.doi.org/10.1103/PhysRevLett.117.138301
http://dx.doi.org/10.1111/j.1365-3040.2009.01997.x
http://dx.doi.org/ 10.1101/gad.1402406
http://dx.doi.org/ 10.1101/gad.1402406
http://dx.doi.org/ 10.1186/s12915-015-0208-3
http://dx.doi.org/ 10.1016/j.jtbi.2005.03.017
http://dx.doi.org/ 10.1371/journal.pone.0118238
http://dx.doi.org/ 10.1387/ijdb.041941ae
http://dx.doi.org/ 10.1387/ijdb.041941ae


6

tribution.” PloS one 7, e45444 (2012).
[20] M Scianna, C G Bell, and L Preziosi, “A review of math-

ematical models for the formation of vascular networks.”
Journal of theoretical biology 333, 174–209 (2013).

[21] W J Hacking, E VanBavel, and J A E Spaan, “Shear
stress is not sufficient to control growth of vascular net-
works: a model study,” The American Journal of Physi-
ology 270, H364–75 (1996).

[22] Qi Chen, Luan Jiang, Chun Li, Dan Hu, Ji-wen Bu,
David Cai, and Jiu-lin Du, “Haemodynamics-driven de-
velopmental pruning of brain vasculature in zebrafish.”
PLOS Biology 10, e1001374 (2012).

[23] Danielle Marcos and Thomas Berleth, “Dynamic auxin
transport patterns preceding vein formation revealed by
live-imaging of Arabidopsis leaf primordia,” Frontiers in
Plant Science 5, 235 (2014).

[24] Dan Hu and David Cai, “Adaptation and Optimization of
Biological Transport Networks,” Physical Review Letters
111, 138701 (2013).
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