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Dense suspensions of hard particles in a Newtonian liquid can be jammed by shear when the
applied stress exceeds a certain threshold. However, this jamming transition from a fluid into a
solidified state cannot be probed with conventional steady-state rheology because the stress distri-
bution inside the material cannot be controlled with sufficient precision. Here we introduce and
validate a method that overcomes this obstacle. Rapidly propagating shear fronts are generated
and used to establish well-controlled local stress conditions that sweep across the material. Exploit-
ing such transient flows, we can track how a dense suspension approaches its shear jammed state
dynamically, and quantitatively map out the onset stress for solidification in a state diagram.

Suspending solid particles in a liquid creates a
more viscous fluid [1–3]. For sufficiently large volume
fraction φ of particles, the suspension becomes non-
Newtonian, and the viscosity depends on the shear-
ing intensity. Non-Newtonian behaviors commonly in-
clude continuous shear thickening (CST) [4–6], where
the viscosity increases mildly with applied shear and,
for larger φ, discontinuous shear thickening (DST)
[7–9], where the viscosity can increase by more than
an order of magnitude. Even richer dynamics occur
when φ approaches the threshold for jamming [10, 11]:
at sufficiently high shear stress, suspensions can re-
versibly transform from a viscous fluid into a solidified
state [12, 13]. Experiments [9, 14–19] and simulations
[20, 21] both suggest that strong thickening and solid-
ification due to shear are related to a stress-dependent
change in particle-particle interactions, which switch
from lubrication at low stress to direct, frictional con-
tact at high stress. A phenomenological model that
unifies CST and DST within a framework based on
such stress-dependent interactions was developed by
Wyart and Cates [22]. Predictions of this model for
the shear thickening regime have been validated by ex-
perimental [17, 23, 24] and numerical [21, 25–27] work.
Importantly, the model also makes predictions for the
transition into the shear jammed, solid-like state but
these have not yet been tested.

A key reason for this is that a direct test requires
conditions in which the local shear stress can be con-
trolled. By contrast, conventional experiments, as
well as simulations, control the shear rate or the shear
stress only at the boundaries of a suspension, which
means that unsteady flow can develop in the interior
and local stress control is lost, a situation especially
likely during DST or when the suspension is about to
transform into a solid [23, 28].

It turns out, however, that a different means of ap-
plying shear can establish a local environment that
is stress controlled. This is the transient process of
stress-activated solidification, which has been stud-
ied under conditions of impact [12, 29–31], extension
[32, 33], or simple shear [13, 34]. In each case, rapid
external forcing turns the suspension into a jammed

∗E-mail:endao.han1988@gmail.com

(a) (b)

(c)

10
�1

10
0

10
1

10
2

10
3

0 2 4 6 8 10 12 14

�

(P
a
)

�1
)

Wyart�Cates model

Steady�state rheology

Wide�gap transient flow

�
.

x

y

FIG. 1: (a) Relation between shear stress Σ and shear rate
γ̇ for a suspension in the SJ regime. Steady-state rheology
was performed with parallel plates geometry schematically
illustrated in (b), and the transient flow in a wide-gap
geometry is shown in (c). Red arrows indicate the motions
of the solid boundaries.

solid, which can “melt” and return to a fluid state once
the applied stress is removed [12, 13, 35, 36]. The key
element here is that this dynamic jamming, irrespec-
tive of how it is triggered, proceeds via propagating
fronts that build up a region that sustains high stress
between the front and the solid driving boundary. As
these fronts penetrate the material, they therefore cre-
ate local stresses that are, in turn, controlled by the
forcing applied at the boundary [34].

Here we show how propagating fronts can be
exploited to perform stress-controlled rheology in
regimes inaccessible to methods based on steady-state
driving1. By generating quasi-one-dimensional fronts
in a wide-gap shear geometry, we quantitatively test
a major prediction of the Wyart-Cates model [22] for
the location of the boundary delineating DST and
shear-jammed states as a function of packing fraction
and applied stress.

Under steady driving conditions, the state of a
dense suspension with packing fraction φ can be de-
scribed by two parameters: the shear stress Σ and the
shear rate γ̇. As an example, the black line in Fig. 1(a)

1 Here steady driving includes shearing with constant velocity
or constant force at the boundary.
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shows the flow curve predicted by the Wyart-Cates
model [22] for a suspension in the shear jamming (SJ)
regime under stress-controlled conditions. With in-
creasing Σ it bends back towards low γ̇, and eventu-
ally, intersects with the vertical axis where γ̇ = 0 s−1.
At that intersection, the suspension can sustain non-
zero shear stress at zero shear rate, and therefore must
have developed a finite, non-zero shear modulus. This
means the suspension is now jammed. We call the
stress at this point the onset stress of shear jamming,
ΣSJ. As increasing shear stress is applied, the jammed
suspension remains solid (vertical portion of the black
line along the vertical axis) until Σ eventually exceeds
the yield stress of the jammed solid (not shown).

However, when this model is compared to steady-
state experimental data (blue squares in Fig. 1(a)),
we see apparent deviations. The data were taken
with a cornstarch suspension of φ = 0.52 [37, 38], us-
ing a parallel-plate geometry (Fig. 1(b)) under stress-
controlled shearing conditions. Here φ was well above
the frictional jamming packing fraction φm = 0.45
[34], which is the lower limit that allows SJ. As the
figure shows, though the model does a good job pre-
dicting the results at Σ < 5 Pa, the measured Σ-γ̇
curve bends only slightly towards low γ̇ at high Σ.
Instead of intersecting with the γ̇ = 0 s−1 axis as
expected for SJ, the curve eventually bends forward
again. Such behavior is typical for DST, a regime in
which the Wyart-Cartes model predicts s-shaped Σ-γ̇
curves [17, 22, 24]. The question thus arises: what
causes these deviations from the model?

Rheology experiments can be performed with a va-
riety of geometries. The most common geometries are
parallel plates, cone and plate, and concentric cylin-
ders (Couette cell). For all three geometries, the basic
idea is similar: the sample is placed inside a narrow
gap (normally 0.1-1 mm) and sheared continuously.
To obtain the correct viscosity from such measure-
ments, certain conditions must hold: the flow must
be steady such that ∂u/∂t = 0; γ̇ and Σ in the bulk
must have well-defined spatial profiles so they can be
calculated from the boundary conditions; and there is
no boundary slip. Based on recent work on unsteady
phenomena, when Σ exceeds the onset stress of DST,
ΣDST, there can be complex spatial and temporal
rate fluctuations even though the average stress at the
boundary is held constant [23, 28, 40, 41] and, in addi-
tion, boundary slip can be significant [13, 28, 39, 42].
As a result, it is exceedingly difficult to maintain a
uniformly sheared jammed state under steady-state
driving or to even approach a jammed state in a truly
stress-controlled manner with typical, narrow-gap rhe-
ology experiments.

However, there is another, experimentally accessi-
ble path to jamming by shear, as shown in Fig. 1(a).
Instead of moving up along the black curve, we can get
toward shear-jammed states (such as, e.g., the state
indicated by the open black circle) as asymptotic lim-
its of specific Σ-γ̇ paths like the one indicated by the
orange circles. These data were taken with the same
suspension, but using a wide-gap shear configuration
shown in Fig. 1(c). Note how this curve bends back
strongly and can get much closer to the vertical axis
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FIG. 2: Front profiles in the co-moving frame for a sus-
pension with φ = 0.53. (a) Velocity profile v(x − xf). (b)
Shear stress Σ (magenta squares) and shear rate γ̇ (blue
circles) profiles. (c) Local viscosity η = Σ/γ̇.

than the blue data. We now describe how such flow
curves can be used to perform rheology measurements.

In our wide-gap shear configuration, a 1 cm thick,
horizontal layer of suspension was floated on heavy
oil, and a straight vertical plate in the suspension was
used as the solid boundary that applied the shear [43].
Fig. 1(c) sketches the top view of the system. The left
boundary moves with a constant speed U0 along the
y-direction. Immediately after start-up, a transient
flow develops in the x-direction, perpendicular to the
movement of the boundary, and spreads across the
initially quiescent suspension. For suspensions with
φ > φm, this flow generates a shear jamming front
when U0 is sufficiently fast, i.e., the applied stress suf-
ficiently large [34, 44]. The profile of such fronts has
an approximately invariant shape, thus it can be rep-
resented as

F (x, t) = F (x− Uft), (1)

where F can be Σ, γ̇, or the y component of the ve-
locity v. We define the front position xf as where
v = 0.45U0, which is also approximately where γ̇
peaks. The front propagates with a constant speed
Uf ≡ kU0, where k is the dimensionless front propaga-
tion speed. With increasing U0, k reaches a maximum
plateau or peak value kp that increases with φ but be-
comes independent of U0 [34].

To use the fronts for rheology, we need to know the
local shear rate and stress generated by them. Given
our effectively 1D flow, the equation of motion is

ρ
∂v

∂t
= −∂Σ

∂x
, (2)

which reflects the fact that the viscous stress is always
balanced by the acceleration of the suspension. This
allows us to obtain the local shear stress without mea-
suring forces, simply by calculating the stress needed
for the suspension to accelerate. From Eq. 1 and Eq. 2,
we obtain Σ = ρUfv, and therefore Σ(x, t) has the
same shape as v(x, t), but with a prefactor ρUf. The
mean velocity profile v(x − xf) is shown in Fig. 2(a).
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FIG. 3: Σ-γ̇ flow curves for a suspension with φ = 0.53,
driven at different boundary speeds U0. The solid black
curve shows the prediction of the Wyart-Cates model. The
dashed black line shows Σ = ηNγ̇. The dash-dot black line
is Σ ∝ γ̇1.7.

Here v(x, t) was shifted by xf and then averaged to
obtain v(x − xf). The corresponding shear stress is
shown in Fig. 2(b). As (x−Uft)→ −∞, v → U0, and
Σ asymptotically approaches Σ∞ = ρkU2

0 . Since this
stress originates from the acceleration of the whole
flow, which develops with little variation in shape be-
fore the front reaches a solid boundary, Σ∞ is very
stable.

The local shear rate γ̇ = |∂v/∂x| calculated from
the averaged velocity profile is also shown in Fig. 2(b).
Because ours is a 1D system, we take γ̇ to be positive
for simplicity. We can see that both Σ and γ̇ increase
at the leading edge of the front (x > xf). However,
behind the front (x < xf), Σ keeps increasing and ap-
proaches Σ∞, while γ̇ decreases and approaches zero.
This means that the viscosity η = Σ/γ̇ increases dra-
matically behind the front, as shown in Fig. 2(c).

Moreover, compared to DST, where η ∝ Σ, the
viscosity increase here is “beyond discontinuous”, be-
cause now η diverges as Σ → Σ∞ (see Suppl. Mat.).
In other words, once the front passes, the suspension
will evolve toward a solid-like shear-jammed state with
finite shear modulus so that γ̇|t→+∞ → 0.

While we plot the orange curve in Fig. 1(a) together
with the steady-state prediction and experiment, this
transient flow curve needs to be interpreted differently.
For any point on a steady-state flow curve, the overall
accumulated strain γ =

∫
γ̇dt is irrelevant since the

curve describes a stationary state. In contrast, un-
der transient conditions, the state of the suspension
evolves with time, and each point on the Σ-γ̇ curve
corresponds to a different γ. For example, the orange
curve in Fig. 1(a) starts from γ = 0 at small Σ. In
accordance with Fig. 2(b), as γ accumulates while the
front sweeps through, Σ and γ̇ both increase following
a power law (Fig. 3) until γ̇ reaches its maximum and
then decreases toward zero. Since the front propagates
with a constant speed, γ(x, t) is always proportional
to v(x, t), and thus Σ(x, t), during the process (see
Suppl. Mat. for details).
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FIG. 4: (a)Normalized front propagation speed k/kp as a
function of shear stress Σ∞ for different packing fractions
φ. (b) Predictions of the generalized Wyart-Cates model
(Eq. 5).

Importantly, the specific stress level Σ∞ that is ap-
proached in this manner within the range of jammed
states is fully controlled by U0, as shown in Fig. 3.
The data here were obtained by two analysis meth-
ods. Solid points are from the mean velocity profiles
v(x − xf), and Σ and γ̇ were extracted the same way
as in Fig. 2. Open circles were obtained by first calcu-
lating Σ and γ̇ from the velocity profiles at each time
step, and then averaging Σ and γ̇. The two meth-
ods match well, especially at large U0. This technique
enables us to systematically probe the theoretical on-
set boundary of SJ (black curve in Fig. 3) and the
corresponding ΣSJ, because when a smaller stress is
applied, jamming fronts can not be generated and the
Σ-γ̇ curves will be qualitatively different from those
shown in Fig. 3.

To be more quantitative, we not only find the condi-
tions under which a jamming front is observed but also
can extract its dimensionless front speed k as a func-
tion of Σ∞, as shown in Fig. 4(a). In the SJ regime,
since γ̇ → 0 s−1 eventually, γ approaches a finite value
γ∞ asymptotically. The dimensionless front propaga-
tion speed is directly controlled by this asymptotic
strain, as k = 1/γ∞ [34]. Since γ∞ is a function of φ,
so is k. For suspensions prepared with different φ, we
normalized k(φ) by its mean peak height, kp(φ). In
general, k/kp grows from 0 to 1 as Σ∞ increases, with
suspensions at smaller φ requiring larger stress Σ∞ to
reach the same k/kp.

Now we compare the experimental measurements
with the generalized Wyart-Cates model [34], in which
the constitutive relation is written as

Σ = η0γ̇

[
1− φ

φ0 − f(Σ)g(γ)(φ0 − φm)

]−2
, (3)

where η0 is the solvent viscosity and φ0 is the fric-
tionless jamming packing fraction. As long as f
and g are continuous monotonic functions that satisfy
f(0) = g(0) = 0 and f(+∞) = g(+∞) = 1, the model
works qualitatively. For the suspensions that we use,
g(γ) = 1− exp(−γ/γ∗) agrees well with experimental
results [34]. The form of f(Σ), on the other hand,
has been proposed in various forms [22, 40, 46, 47].
Here we use f(Σ) = exp(−Σ∗/Σ) [46, 47]. In the
equations, γ∗ and Σ∗ are the characteristic strain and
stress scales, respectively. The behavior of steady-
state rheology is recovered in the γ →∞ limit where
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FIG. 5: State diagram. Squares are the onset stress of
DST obtained from standard rheology with parallel plates
(black) [34] and wide-gap Couette cell (open) [13]. Solid
circles show the SJ regime mapped out by our experiments
with transient flows (Σ∞(φ)). Open circles are the onset
stress of SJ from Peters et al. [13]. The red region shows
the DST regime and the green curve shows ΣSJ (Eq. 6)
predicted by the Wyart-Cates model [22].

g(γ)→ 1, such as the black curves in Fig. 1 and Fig. 3.
The suspension reaches a shear jammed state when

the terms in the square bracket in Eq. 3 vanish (see
Suppl. Mat.). As a result, we have

f(Σ∞)g(γ∞) =
φ0 − φ
φ0 − φm

≡ 1− Φ, (4)

and thus γ∞(Σ∞) = g−1 [(1− Φ)/f(Σ∞)], where Φ
is a rescaled packing fraction and g−1 is the inverse
function of g. In the high stress limit where Σ∞ � Σ∗,
f(Σ∞) = 1, thus γ∞(Σ∞ � Σ∗) = g−1(1−Φ), which
corresponds to 1/kp. Finally, we get the relationship
between k/kp and Σ∞

k

kp
=

1/γ∞(Σ)

1/γ∞(Σ� Σ∗)
=

g−1(1− Φ)

g−1[(1− Φ)/f(Σ∞)]
. (5)

The results are presented in Fig. 4(b), and we see the
stress dependence of k in agreement with the experi-
ments. Note that in the experiments, at stresses above
approximately 2,000 Pa, k/kp deviates from 1 and de-
creases. We suspect that this is due to excessive dila-
tency of the system in the direction perpendicular to
the x-y plane shown in Fig. 1(c), which was not con-
fined in our experiments. In the model, we assume
that φ is a constant, so any effect due to φ variation
is not captured.

The agreement between the experiments and the
model allows us to map out the boundary of the SJ
regime in the state diagram, as shown in Fig. 5. From
steady-state rheology experiments, we obtained φm,

φ0, and Σ∗ [34]. The solid black curve shows ΣDST

calculated based on the Wyart-Cates model. Exper-
imental measurements from steady-state rheology lie
right on top of this predicted boundary. As expected,
SJ is observed only when φ is between φm (left) and φ0
(right) labeled by the vertical dashed lines. The pre-
dicted ΣSJ is obtained by setting g(γ) = 1 in Eq. 4,
thus

ΣSJ = − Σ∗

ln(1− Φ)
. (6)

This is shown by the solid green curve in Fig. 5, which
our experiments now can test quantitatively. In a pre-
vious experiment by Peters et al., a boundary for the
SJ onset was obtained by observing whether a small
sphere dropped onto the suspension remained on its
surface or sank in [13]. This boundary is shown in
Fig. 5 by the open circles. As we can see, it lies signif-
icantly above what the model predicts. In compari-
son, our experimental method more sensitively detects
possible shear jammed states at relatively low stress.
The solid circles in Fig. 5 show the region where jam-
ming fronts are observed, and their colors map out the
corresponding k/kp. Combining the results shown in
Fig. 4 and Fig. 5, we find that the Wyart-Cates model
provides a remarkably good prediction of the onset of
both DST and SJ.

In conclusion, we show that conventional steady-
state rheology has limitations when testing suspen-
sions in the regime where shear jamming is ap-
proached. To obtain flow curves for suspensions in
this regime, we introduce a method that takes advan-
tage of transient shear fronts in a wide-gap linear shear
cell. As the front propagates, the dense suspension be-
hind the front evolves toward a shear jammed state,
and the stress of this jammed state can be controlled
by the speed of the shearing boundary. This makes
it possible to map out the onset stress for shear jam-
ming at different packing fractions. We find that the
Wyart-Cates model and its generalization can predict
this onset stress as well as the stress-dependent front
propagation speed.
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