aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Unified Theoretical and Experimental View on Transient
Shear Banding
Roberto Benzi, Thibaut Divoux, Catherine Barentin, Sébastien Manneville, Mauro
Sbragaglia, and Federico Toschi
Phys. Rev. Lett. 123, 248001 — Published 9 December 2019
DOI: 10.1103/PhysRevlLett.123.248001


http://dx.doi.org/10.1103/PhysRevLett.123.248001

Unified theoretical and experimental view on transient shear banding

Roberto Benzi,' Thibaut Divoux,?3 Catherine Barentin,*

Sébastien Manneville,?® Mauro Sbragaglia,! and Federico Toschi®

! Dipartimento di Fisica, Universita di Roma “Tor Vergata” and INFN,
Via della Ricerca Scientifica, 1-00133 Roma, Italy
? MultiScale Material Science for Energy and Environment, UMI 3466,
CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
3Department of Cwil and Environmental Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139
4 Université de Lyon, Université Claude Bernard Lyon 1,
CNRS, Institut Lumiere Matiére, F-69622 Villeurbanne, France
SUniv Lyon, Ens de Lyon, Univ Claude Bernard,

CNRS, Laboratoire de Physique, F-69342 Lyon, France
SDepartment of Applied Physics, Eindhoven University of Technology,
P.O. Box 513, 5600 MB FEindhoven, The Netherlands
(Dated: November 14, 2019)

Dense emulsions, colloidal gels, microgels, and foams all display a solid-like behavior at rest
characterized by a yield stress, above which the material flows like a liquid. Such a fluidization
transition often consists of long-lasting transient flows that involve shear-banded velocity profiles.
The characteristic time for full fluidization, 7¢, has been reported to decay as a power-law of the
shear rate 4 and of the shear stress o with respective exponents o and 3. Strikingly, the ratio of
these exponents was empirically observed to coincide with the exponent of the Herschel-Bulkley law
that describes the steady-state flow behavior of these complex fluids. Here we introduce a continuum
model, based on the minimization of a “free energy”, that captures quantitatively all the salient
features associated with such transient shear-banding. More generally, our results provide a unified
theoretical framework for describing the yielding transition and the steady-state flow properties of

yield stress fluids.

Introduction.- Amorphous soft materials, such as dense
emulsions, foams and microgels, display solid-like prop-
erties at rest, while they flow like liquids for large enough
stresses [IH4]. These yield stress fluids are characterized
by a steady-state flow behavior that is well described by
the Herschel-Bulkley (HB) model, where the shear stress
o is linked to the shear rate 4 through o = 0.+ A4"™, with
o. the yield stress of the fluid, A the consistency index
and n a phenomenological exponent that ranges between
0.3 and 0.7, and is often equal to 1/2 [5Hg]. However,
steady-state flow is never reached instantly and the yield-
ing transition may involve transient regimes much longer
than the natural timescale 4! [4] QHI3].

As demonstrated experimentally in Refs. [I4416], long-
lasting heterogeneous flows develop from the initial solid-
like state, involving shear-banded velocity profiles before
reaching a homogeneous steady-state flow. Depending
on the imposed variable, ¥ or o, the characteristic time
7t to reach a fully fluidized state was reported to scale
respectively as 7r oc 1/5% or as 7 oc 1/(0 — 0..)?, where
« and S are fluidization exponents that only depend on
the material properties (see Fig. . Interestingly, these
two power laws naturally lead to a constitutive relation
o vs v given by the steady-state HB equation with an
exponent n = «/f [15].

The above experimental findings have triggered a
wealth of theoretical contributions aiming at reproduc-
ing long-lasting heterogeneous flows, some of which have

successfully produced transient shear-banded flows to-
gether with non-trivial scaling laws for fluidization times
[17H23]. While these contributions offer potential expla-
nations for long-lasting transients, which appear to be
age-dependent and related to structural heterogeneities
[18, 20H22] 24], none of these numerical studies captures
the link between the exponents governing the transient
regimes and that of the steady-state HB behavior.

From a more general perspective, shear banding has of-
ten been discussed as a first-order dynamical phase tran-
sition [I3] 25H28]. In that framework, transient shear
banding can be interpreted as the coarsening of the fluid
phase, which nucleates within the solid region and whose
size § can be seen as the growing length scale that charac-
terizes the coarsening dynamics. In this letter, we show
that the yielding transition and the corresponding tran-
sient shear-banding behavior can be described by a field
theory based on a “free energy”, whose order parameter
is the fluidity, i.e., the ratio between the shear rate and
the shear stress. In such a theory, as first introduced
by Bocquet et al. [27] and later analyzed in Ref. [29],
shear-banded flows can be obtained as a minimum of a
“free energy” that depends on the fluidity and on the
non-local, i.e., spatially-dependent [25] 28], rheological
properties of the system. A link between the fluidity or-
der parameter and the physics of elasto-plasticity at the
mesoscale has been explored in Ref. [30] based on Es-
helby elastic response functions [31H33]. Here we build
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FIG. 1: (color online) Stress-induced fluidization time 7¢ vs
reduced shear stress o — o for carbopol microgels at various
weight concentrations: 0.5% (), 0.7% (+), 1% (e) and 3%
(m). Solid lines correspond to the best power-law fits of the
various data sets 7t ~ (0 — Uc)fﬁ with exponent [ ranging
from 2.8 to 6.2. Experimental conditions are listed in Supple-
mental Table S1 together with values of o. and f.

upon the fluidity approach and extend it, leading to an-
alytical expressions for the scaling exponents o and (3
that are in quantitative agreement with experiments and
that provide a clear-cut explanation for the link between
these exponents and the HB exponent n. Our findings
demonstrate that non-local effects are key to understand
transient shear banding in amorphous soft solids.
Fluidity model.- We start by considering that the bulk
rheology of the system is governed by the dimensionless
HB model, ¥ = 1+, where & = o /o, is the shear stress
normalized by the yield stress and T' = /(0 /A)Y/™ is
the shear rate normalized by the characteristic frequency
for the HB law. Given the spatial coordinate y along
the velocity gradient direction and the system size L, we
next assume that the flow properties of the yield stress
fluid are controlled by a “free energy” functional, F[f] =

foL ®(f,m,§)dy, where [27, [34]

1 1 2
(f,m, &) = §§Z(Vf)2 - §mf2 + gf5/2 - (1)
The quantity f = f(y) is the local (dimensionless) fluid-
ity defined by f(y) = I'(y)/%(y) and represents the order

parameter in the model. Following Refs. [27, 29], m? is
defined as:

(X —1)t/n

m?(z) s

for ¥ >1 (2)

and m? = 0 for ¥ < 1. This formulation implies that, for
f(y) = m? independently of y, the system flows homoge-
neously and follows the dimensionless HB model. Finally,
the length scale ¢ is usually referred to as the “coopera-
tive” scale and is of the order of a few times the size of

the elementary microstructural constituents [27), B5H38].
In steady-state, the flowing properties of the system can
then be derived from the variational equation 6 F'/d f = 0.
This equation predicts heterogeneous flow profiles as in-
duced by wall effects but it cannot account for stable
shear banding [29]. Moreover, transient flow properties
require that some temporal dynamics be specified for f.
To overcome these limitations, we now generalize a recent
theoretical proposal introduced in Ref. [29] and apply it
to describe transient flows.

Stress-induced fluidization dynamics.- Let us first fo-
cus on the yielding transition under an imposed shear
stress o for which m is a constant. We note that intro-
ducing f = f/m? and § = m'/?y/¢ allows us to rescale
homogeneously the functional ® to ®(f, m,&) = m5<f>(f),
where [39]

B(f) = |5V - 3P 2P ®)

The advantage of using f and § is that we can now for-
mulate the dynamical equation independently of both the
strength of external forcing m and £&. We further assume
that the system reaches a stable equilibrium configura-

tion corresponding to a minimum of F'[f] and that such

dynamics is governed by a “mobility” k(f), for which the
most general dynamical equation reads [34]

of _ s 7 0Ff]
o0 = D5 W

= k() [Bf + - 7]

If the mobility k( f) is an analytic function of f and
k(0) = 0, then Eq. can account for a shear-banding
solution in the general form (@) = 0 (solid branch) for
§ € [0,L—4] and f(g) solution of Af+ f — f3/2 = 0 (flu-
idized branch) for § € [L — 4, L], where 4 is the rescaled
size of the fluidized region. Furthermore, transient shear
banding corresponds to the case where the solid branch
f = 0 is an unstable solution. To explore this latter
case, we next consider the time dynamics in Eq.
with k(f) = f and fixed initial conditions. Note that
the initial conditions influence mainly the early-time re-
sponse of the fluid. A detailed discussion on the choice
of k( f) and on intial conditions is given in the Sup-
plemental Material. Equation is solved numerically
for ¥ = 1.1 and {/L = 0.01 in Figs. Pf(a)-(b), assum-
ing f(9,0) = fo < 1 for the initial solid-like state and
f(f,, t) =1 and agf(o, t) = 0 for boundary conditions at
the two different walls. Such a choice will be addressed
below in the discussion section. As seen in the veloc-
ity profiles v(y) [insets in Fig. 2fa)], the system forms a
shear band near y = L at time ¢ > 0. The shear band
grows in time and the system eventually reaches the sta-
ble equilibrium configuration f (g,t) = 1 within a well-
defined fluidization time T;. This phenomenology is in
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FIG. 2: (color online) Stress-induced fluidization dynamics in (a)-(b) theory and (c)-(d) experiment on a 1 % wt. carbopol
microgel in a smooth concentric cylinder geometry of gap 1 mm. (a) and (c) Shear rate I" and 4 vs time ¢ for a shear stress of
> = 1.1 and o = 41 Pa respectively. Insets: velocity profiles v normalized by the velocity of the moving plate vg as a function
of the distance y to the fixed plate normalized by the gap size L. Profiles taken at different times [symbol, time]: (e,1100);
(v,5.510%); (m,3.310%); (4,6.610°%) in (a) and (e,1011 s); (V,6927 s); (=,8193 s); (+,9522 s) in (c). (b) and (d) Width & of the
fluidized shear band normalized by the gap width L vs time ¢. The vertical dashed lines crossing (a)-(b) and (c)-(d) respectively

indicate the fluidization times Tt and 7.

remarkable agreement with experimental observations in
Figs. c) and (d) for a carbopol microgel. In particular,
the band size J(t) follows very similar growths whatever
the applied stress (see Supplemental Fig. S1).

Using Eq. , we may predict the scaling behavior of
the fluidization time Tt as a function of m. Upon rescal-
ing the time as ¢ = mP°t, we observe that Eq. no
longer depends on m. Regardless of the specific function
k(f), we expect that the shear band expands with some
characteristic velocity oy independent of m. Therefore,
the rescaled fluidization time should be proportional to
L /. Tt follows that the fluidization time should exhibit
the scaling Tt ~ L/(m5o¢) ~ 1/(ém®/?) independently of
the specific functional form of k(f). The numerical in-
tegration of Eq. for various values of m leads to the
fluidization times Tt shown in Fig. a), which nicely fol-
low the predicted m~9/2 power-law decay. Such a scaling
is also in excellent agreement with the experimental data
of Fig. [I] when rescaled and plotted in terms of m(X)
based on the experimental steady state HB parameters
[see Fig. 3b) and discussion below].

Strain-induced fluidization.- We now proceed to show
that the same approach allows us to rationalize the yield-
ing transition under an imposed shear rate I'. In that
case, we must supplement the theory by the fluidity equa-
tion X =T — fX, which corresponds to a single Maxwell
mode for the evolution of the stress [I§]. Moreover, m

being a function of time, we can no longer use the rescal-
ing f = f/m?2. Since I is a constant, we rather introduce
the rescaled variable f =f/ I. Upon rescaling the spatial
variable as § = I''/4y /¢, the analogous of Eq. reads

O o) [Af+mi -7, )
where 7 = m/T'"/2. Under the assumption that 7 re-
mains roughly constant during the shear band evolution,
rescaling time as ¢ = I'%/2¢ leads to Ty ~ L/(I5/20¢) ~
1/(£19/4). The inset of Fig. 4 shows the actual Ty com-
puted numerically from Eq. (5) with &( f) = f for dif-
ferent shear rates I'. The results are very well fitted by
a power-law decay of exponent 2.15 £ 0.10, quite close
to the theoretical exponent o = 9/4, and in good agree-
ment with experiments on a 1% wt. carbopol microgel for
various geometries and boundary conditions that lead to
an exponent of 2.45 + 0.23 (see Fig. [4| and Supplemental
Table S2).

Discussion.- Let us now compare the theoretical find-
ings against experimental data. Coming back to the case
of an imposed shear stress and to the definition of m in
Eq. , we note that Tt ~ m~?/2 corresponds to the
scaling Ty ~ (X — 1)~%/4" in terms of the reduced vis-
cous stress > — 1. This corresponds to a fluidization
exponent 5 = 9/4n. To illustrate such a scaling, nu-
merical results are plotted in Supplemental Fig. S2 for
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FIG. 3: (color online) Stress-induced fluidization time as a
function of m(X) defined by Eq. (2)). (a) Theoretical predic-
tions T¢. (b) Experiments from Fig. |l| where each data set for
7r was rescaled by the time 79 shown in the inset as a func-
tion of the microgel concentration C' (see also Supplemental
Table S1). Red lines show the predicted power law with ex-
ponent —9/2. The best power-law fits of the whole data sets
yield exponents —4.464+0.10 and —4.6940.33 respectively for
theory and experiments. The gray line in the inset is 7o ~ C?.

different values of n covering the range reported in ex-
periments (n ~ 0.30-0.57). The spread of the exponents
B ~ 3-8 nicely corresponds to that observed experimen-
tally (8 ~ 2.8-6.2). More specifically, these theoretical
predictions prompt us to revisit the experimental data
shown in Fig. [1| by computing estimates of m(X) using
Eq. with ¥ = 0 /0. and the HB parameters 0. and n
determined at steady state [I5]. When plotted as a func-
tion of m(X), the experimental fluidization times remark-
ably collapse onto the predicted scaling 7 ~ m(X)~%/4,
provided 7t is rescaled by a characteristic time 7 inde-
pendent of the applied stress [see Fig. b)] Although a
clear physical interpretation of 7y is still lacking [40], the
collapse of the experimental data seen in Fig. b) is a
strong signature of the predictive power of the theory.
Another key outcome of the proposed approach is
that, assuming an underlying HB rheology, it provides
the first theoretical analytical expressions for both flu-
idization exponents a and 3, in quantitative agreement
with experimental results. Moreover, the ratio of these
exponents, o/ = (9/4)/(9/4n) = n, coincides with
the Herschel-Bulkley exponent exactly as in experiments
[15, 16]. Therefore, the present theory provides a nat-
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FIG. 4: (color online) Strain-induced fluidization time 7¢ vs
shear rate 4 for a 1% wt. carbopol microgel under the vari-
ous experimental conditions listed in Supplemental Table S2.
Inset: theoretical prediction for Tt vs I'. Red lines show the
predicted power law with exponent —9/4. The best power-
law fits of the whole data sets yield exponents —2.15 + 0.10
and —2.45 £ 0.23 respectively for theory and experiments.

ural framework for justifying the empirical connection
between transient and steady-state flow behaviors.

Furthermore, the scaling found here for 7¢ is extremely
robust and depends only weakly on the initial conditions.
As illustrated in Supplemental Figs. S3 and S4 for two
different initial values of the fluidity in the gap, the shear
rate either shows a monotonic increase up to complete
fluidization or displays a decreasing trend with a well-
defined minimum before increasing towards steady state.
Yet, the fluidization time remains comparable in both
cases. Note also that, at early stage, I' shows a power-
law decrease in time that is strongly reminiscent of the
primary creep regime reported in amorphous soft mate-
rials [IT], 15, 4TH45]. In the present model, the power-
law exponent may take any value between —2/3 and 0
depending on the choice of k(f), thus providing an ex-
planation for the diversity of exponents reported in the
literature.

To conclude, our results show that the “free en-
ergy” approach originally introduced to account for non-
local effects in steady-state flows of complex fluids [27]
also captures long-lasting transient heterogeneous flows:
thanks to cooperative effects, a fluidized band nucleates
and grows until complete yielding, which quantitatively
matches the experimental phenomenology. In this frame-
work, transient shear banding appears as the dynami-
cal signature of the unstable nature of the solid branch
at 4 = 0 in the flow curve [, 46, @7]. More gener-
ally, as explored in Ref. [29], the present model also ac-
counts for steady-state shear banding when cooperative
effects are hindered, e.g., by mechanical noise that pre-
vents the shear band from growing through cascading
plastic events. Such a connection between transient and



steady-state behaviors in terms of cooperativity-induced
stability of the shear band offers for the first time a uni-
fied framework for describing the local scenario associ-
ated with the yielding dynamics of soft glassy materials.
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