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Recent nuclear magnetic resonance studies [A. Pustogow et al., arXiv:1904.00047] have challenged
the prevalent chiral triplet pairing scenario proposed for Sr2RuO4. To provide guidance from mi-
croscopic theory as to which other pair states might be compatible with the new data, we perform
a detailed theoretical study of spin-fluctuation mediated pairing for this compound. We map out
the phase diagram as a function of spin-orbit coupling, interaction parameters, and band-structure
properties over physically reasonable ranges, comparing when possible with photoemission and in-
elastic neutron scattering data information. We find that even-parity pseudospin singlet solutions
dominate large regions of the phase diagram, but in certain regimes spin-orbit coupling favors a
near-nodal odd-parity triplet superconducting state, which is either helical or chiral depending on
the proximity of the γ band to the van Hove points. A surprising near-degeneracy of the nodal s′-
and dx2−y2 -wave solutions leads to the possibility of a near-nodal time-reversal symmetry broken
s′ + idx2−y2 pair state. Predictions for the temperature dependence of the Knight shift for fields in
and out of plane are presented for all states.

Superconductivity in Sr2RuO4 remains largely a mys-
tery despite the relative simplicity of the material as com-
pared to the high-Tc cuprates and almost twenty five
years of intense research efforts[1]. Until recently, the
dominant opinion was that Sr2RuO4 represents a unique
example of a chiral triplet superconducting state, sup-
ported by the presumed proximity of layered Sr2RuO4 to
ferromagnetism[2], observed in the perovskite “parent”
material SrRuO3, as well as temperature independent
Knight shift data across Tc, measured on both Ru[3, 4]
and O[5, 6] nuclei. It was soon discovered, however, that
the leading magnetic instability in Sr2RuO4 occurs in
an antiferromagnetic, and not ferromagnetic channel[7–
9], although later weak low q-fluctuations were also
observed[10, 11]. In this case, the usual spin-fluctuation
exchange pairing mechanism[12] would be expected to
lead to even parity spin-singlet solutions rather than
odd parity spin-triplet states. The situation is further
complicated by the multi-orbital nature of the electronic
states[7, 13], as well as sizeable spin-orbit coupling[14–
18], resulting in significant magnetic anisotropy of the
spin fluctuations in this material[10, 19, 20], which com-
plicate theoretical analysis. Furthermore, as the main
belief was that Sr2RuO4 supported a spin-triplet super-
conducting state, most theories focused on such solutions.
For a review of earlier works see e.g. Ref. 1, and also
more recent works, Refs.[21–26].

Very recently, the Knight shift in an in-plane magnetic
field was re-measured by a different group and found to
drop below Tc, severely challenging the prevalent chiral
triplet pair state proposed for Sr2RuO4[27]. Previous re-
sults were interpreted as a result of heating of the sample
during the application of high amplitude radio-frequency

pulses [27]. This NMR result has been recently confirmed
by another group[28], and therefore the problem of super-
conductivity in Sr2RuO4 is ripe for reexamination.

In this Letter we present a detailed theoretical study of
spin-fluctuation mediated pairing relevant for Sr2RuO4

using a realistic spin-orbit coupling (SOC), which cor-
rectly reproduces the magnetic anisotropy found in this
system, and sizeable Hund’s coupling strength[29]. In
particular, we investigate the leading superconducting
instabilities in a framework where SOC is included both
in the electronic structure and the pairing interaction.
Throughout, we relate our results to neutron scattering
data, and additionally discuss the Knight shift and the
existence of nodal gaps in the DOS. Finally, we address
the role of electron interactions beyond the random phase
approximation (RPA) on the preferred Cooper pairing.

Atomic spin-orbit coupling, parametrized here by
HSOC = λsocL · S, does not break time-reversal
symmetry and due to Kramer’s theorem all energies
thus remain doubly degenerate. Degenerate eigen-
vectors are labelled by pseudo-spin σ = +/− and
the relation to electronic annihilation/creation opera-
tors cµ,s(k)/c†µ,s(k) of orbital character µ and spin s
is given by Ψ(k,+) = [cxz↑(k), cyz,↑(k), cxy,↓(k)], and
Ψ(k,−) = [cxz,↓(k), cyz,↓(k), cxy,↑(k)]. In this basis the
non-interacting Hamiltonian can be written in block-
diagonal form Ĥ =

∑
σ Ψ†(k, σ)(H0 + HSOC)Ψ(k, σ)

with the matrices H0 and HSOC given by

H0 =

 ξxz(k) g(k) 0
g(k) ξyz(k) 0

0 0 ξxy(k)

 , (1)
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FIG. 1. Longitudinal spin susceptibility χzz,′RPA(q, ω = 0) at λsoc = 35 meV and leading superconducting instability as a function
of SOC amplitude λsoc and Hund’s coupling J for µxy = 109 meV (a,b) and µxy = 134 meV (c,d). The Fermi surface with the
α, β and γ band is shown for each case by insets with dominating orbital content displayed by colors: xy-orbital is blue, xz is
red and yz is yellow. In (b,d) white symbols display the positions for which the Knight shifts shown in (e-h) were obtained. The
Knight shift is given by χ′0(q = 0, ω = 0), and we set kBTc = 0.5 meV and the maximum amplitude of the gap is ∆max = 1 meV.
The solid blue line is the Knight shift for in-plane fields (xx/yy-component), while the black dashed-dotted line displays the
Knight shift for out-of-plane fields (zz-component). The dotted lines display the normal state Knight shift xx/yy-component
(blue) and zz-component (black).

HSOC =
1

2

 0 −iσλsoc iλsoc
iσλsoc 0 −σλsoc
−iλsoc −σλsoc 0

 , (2)

with σ = +(−) for pseudo-spin up (down) block. The
electronic dispersions are given by ξxz(k) = −2t1 cos kx−
2t2 cos ky − µ, ξyz(k) = −2t2 cos kx − 2t1 cos ky − µ,
and ξxy(k) = −2t3(cos kx + cos ky) − 4t4 cos kx cos ky −
2t5(cos 2kx+cos 2ky)−µxy. As in Ref. 20 we parametrize
the band by {t1, t2, t3, t4, t5} = {88, 9, 80, 40, 5} meV
with g(k) = 0 and the chemical potential of the xz, yz
orbitals µ = 109 meV. Below, µxy is allowed to vary
slightly from µ to map out the effect of a different crystal
field, motivated by a sensitivity of the superconducting
instability to the proximity of the xy orbital Fermi sur-
face states to the van Hove saddle points. We restrict
ourselves to a purely two-dimensional electronic model,
given the strong electronic anisotropy of Sr2RuO4. Al-
though the third dimension may play a role, the main
physics is expected to occur in the RuO2 planes.

We derive the effective electron-electron interaction
in the Cooper channel from the multi-orbital Hub-
bard Hamiltonian which includes intra- and interorbital
Coulomb interactions and Hund’s coupling terms. Sum-
mation of all ladder and bubble diagrams gives the effec-
tive interaction expressed in terms of the bare interaction
parameters U,U ′, J, J ′ and the RPA spin susceptibilities,
for more details see Supplementary Material (SM) [30].

This procedure results in the interaction Hamiltonian

Ĥint =
1

2

∑
k,k′{µ̃}

[
V (k,k′)

]µ̃1,µ̃2

µ̃3,µ̃4

c†kµ̃1
c†−kµ̃3

c−k′µ̃2ck′µ̃4 ,

(3)
with the pairing interaction given by[
V (k,k′)

]µ̃1,µ̃2

µ̃3,µ̃4

=
[
U
]µ̃1,µ̃2

µ̃3,µ̃4

+
[
U

1

1− χ0U
χ0U

]µ̃1µ̃2

µ̃3µ̃4

(k + k′)

−
[
U

1

1− χ0U
χ0U

]µ̃1µ̃4

µ̃3µ̃2

(k− k′). (4)

The label µ̃ = (µ, s) is a joint index for orbital and

electronic spin and χ0 = [χ0]µ̃1,µ̃2

µ̃3,µ̃4
(q, iωn = 0) denotes

the real part of the static generalized multi-orbital spin
susceptibility in the presence of SOC. The interaction
Hamiltonian as stated in Eq. (3) is projected to band
and pseudo-spin space to obtain the final form:

Ĥint=
∑

n,n′,k,k′

∑
l,l′

Ψl(n,k)
1

2
Γl,l′(n,k;n′,k′) Ψl′(n

′,k′).

(5)

Here n, n′ are band indices, and the pseudo-spin informa-
tion is carried by the l, l′ indices with the fermion bilinear
operator, Ψl(n,k), defined in SM [30].

The leading and sub-leading superconducting instabil-
ities are determined from the linearized gap equation

−
∫
FS

dk′f
1

v(k′f )
Γl,l′(kf ,k

′
f )∆l′(k

′
f ) = λ∆l(kf ), (6)
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FIG. 2. Spectral gap ∆k for (a) dx2−y2 (J/U = 0.1), (b) nodal s′ (J/U = 0.2), (c) helical (J/U = 0.25) in the case of µxy = 109
meV, λsoc = 35 meV and U = 120 meV, see white stars in Fig. 1(b). (d) Spectral gap for the chiral solution with µxy = 134
meV, λsoc = 35 meV, U = 50 meV and J/U = 0.25. The band character of the gap is indicated by colors; α (blue), β (yellow)
and γ (red). The band character generally corresponds directly to the orbital character, with the exception of the Fermi surface
regions close to the zone diagonals as visualized in the Fermi surface insets in Fig. 1 (b,d). (e-h) Density of states for ∆max = 1
meV. In panels (e,g,h) we invoke the gap structure in (a,c,d) while (f) shows Nµ(ω) for a TRSB superconductor constructed
by the complex superposition of the two even-parity solutions dx2−y2 and s′.

where ∆l(n,k) = 1
2

∑
n′,k′,l′ Γl,l′(n,k;n′,k′)〈Ψl′(n

′,k′)〉.
The integration in Eq. (6) includes momenta at the Fermi
surface of the three bands with n uniquely defined by kf
and v(kf ) is the Fermi velocity at kf . The eigenvector
∆l(kf ) corresponding to the largest eigenvalue λ displays
the structure of the leading superconducting instability.

The solutions to Eq. (6) are classified according to
the tetragonal lattice symmetry restricted to two dimen-
sions. The even parity states ∆0(k) have four possi-
ble symmetries {s, dx2−y2 , dxy, g} while odd parity states
fall either into one of the four possible superpositions
of ∆x(k) and ∆y(k)) (denoted helical states) or a chi-
ral solution ∆z(k), which is doubly degenerate. Here,
{∆x(k),∆y(k),∆z(k)} denote the components of the
vector d(k) [31] in the pseudospin space. The pseu-
dospins are fixed in the plane perpendicular to the d-
vector. In our approach, the x and y components are
degenerate, due to a lack of hybridization between the
xz and yz orbitals. Therefore, all four helical states are
degenerate, leaving open the possibility of complex su-
perpositions of the type ∆x+ i∆y, which are non-unitary
pair states breaking time-reversal symmetry (TRS).

In Fig. 1(a-d), we show the longitudinal (zz) compo-
nent of the spin susceptibility and the leading supercon-
ducting instabilities as a function of SOC and Hund’s
coupling J for two different values of µxy = 109, 134
meV, to expose the effect of van Hove proximity. The
Fermi surface in each case is shown in the insets of
Fig.1(b,d). The change in µxy has a strong effect on the
physical susceptibilities, as shown in Fig. 1(a,c) where
we plot χzzRPA(q). For the band farthest from the van
Hove point, we observe two prominent nesting vectors,

which are approximately given by Q1 = (2π/3, 2π/3)
and Q3 = (π, 2π/3), see Fig. 1(a). The vector Q1 arises
from the nesting of the 1D-like xz/yz bands, see SM [30],
and has been extensively reported by neutron scatter-
ing [8, 10, 32]. Furthermore, a factor two enhancement
of the out-of-plane susceptibility compared to the in-
plane susceptibility has been reported at this nesting vec-
tor [10]. Our calculations also give a spin anisotropy at
Q1 with a magnitude that depends on both SOC, interac-
tion parameters and the band structure, see SM [30]. As
shown in Fig. 1, the regime where the spin susceptibility
is dominated by Q1 and Q3 results in mainly even-parity
solutions, which are both nodal, s′ or dx2−y2 . A helical
odd-parity pseudo-spin triplet solution is, however, fa-
vored in the regime of large SOC and Hund’s coupling
J , as seen in Fig. 1(b). We stress that for obtaining the
results in Fig. 1, it is crucial to properly include SOC
both in the band structure and in the pairing kernel, see
SM [30]. Experimentally, the spin anisotropy observed
by neutron scattering persist to 300 K [10] and photo-
emission fitting gives a value of λsoc = 32 meV [17]. The
Hund’s coupling is estimated to be J/U ' 0.1 [33].

Only Fermi surfaces with a γ-band very close to the van
Hove point produce a significant quasi-ferromagnetic sig-
nal Q2 originating mainly from intra-orbital xy nesting,
see Fig. 1(c). At large values of λsoc, chiral pseudo-spin
triplet superconductivity emerges as shown in Fig. 1(d).
However, when Q2 is less pronounced in better agreement
with neutron experiments, the chiral state is entirely
absent as a leading instability. For further parameter-
dependence of the leading superconducting instability, we
refer to the SM [30].
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We note that a similar spin-fluctuation based approach
was recently employed in Ref. 24, focusing on the very
weak-coupling regime and small Hund’s interaction. In
this limit, chiral or helical solutions were found, whereas
even-parity solutions dominated the regime of intermedi-
ate coupling strengths. One of our main findings, how-
ever, is that a helical state becomes again dominant for
the larger values of the Hund’s coupling and sizeable
SOC, see Fig.1(b). In addition, the chiral state occurs
only in regimes where the spin fluctuations appear in-
consistent with available neutron scattering data.

The Knight shift provides a way to distinguish between
even and odd-parity solutions found in Fig. 1(b,d). We
address the Knight shift by a calculation of the uni-
form spin susceptibility in the superconducting state,
χ′0(q = 0, ω = 0) in four different gap scenarios; dx2−y2 ,
s′ + idx2−y2 , helical and chiral superconductivity. The
proposed solution s′ + idx2−y2 which displays time re-
versal symmetry breaking is restricted to the parameter
space where s′ and dx2−y2 are degenerate.

If SOC was negligible, we would expect the Knight
shift of the even-parity superconductors to be completely
suppressed in all spin channels for T → 0 [34] with ex-
ponential suppression for a full gap (s-wave) and linear
suppression for a nodal gap. As seen in Fig. 1(e,f), the
even-parity solutions do exhibit suppression in all spin
channels, but more pronounced for the in-plane field di-
rections, xx/yy. The simple expectation for singlet su-
perconductors breaks down because a pseudo-spin singlet
solution contains both electronic spin singlet and triplet
character. To illustrate this point more clearly, we show
in SM [30] how a conventional s-wave superconductor
acquires a residual Knight shift at T = 0 as an effect of
SOC. The properties of helical and chiral solutions, how-
ever, remain largely as expected from the λsoc = 0 case:
The helical superconductor exhibits a partial Knight shift
suppression for in-plane fields and is insensitive to out-of-
plane fields, see Fig. 1(g). For the chiral state shown in
Fig. 1(h), the Knight shift is unaffected by in-plane fields
and suppressed by out-of-plane magnetic fields, but full
suppression is prevented by SOC [26].

Relating to the newest NMR results [27], our calcu-
lations reveal that the superconducting ground state in
Sr2RuO4 is consistent either with an even-parity pseudo-
spin singlet or a helical pseudo-spin triplet pair state. Fu-
ture NMR measurements for out-of-plane fields should be
able to distinguish between these cases: the helical solu-
tion should exhibit no suppression, while the even-parity
solution should display a clear suppression. Finally, we
note that a possible non-unitary TRSB state of the type
∆x + i∆y would display the same Knight shift as the
helical solution.

Turning to the spectral properties of the various su-
perconducting states found above, an outstanding exper-
imental puzzle is the experimental observation of nodes
(or near-nodes) in the density of states (DOS) [35–40].
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FIG. 3. (a) χzz(q)/χ+−(q) along the path (0, 0) − (π, 0) −
(π, π)−(0, 0) in the case of Zxz/Zxy = 1.6 for a band with µ =
90 meV, µxy = 128 meV and λsoc = 35 meV. The signal at Q1

dominates and exhibits a spin anisotropy in rough agreement
with experiments [10].(b) Leading superconducting instability
for µ, µxy and λsoc as in (a) as a function of quasi-particle
weight anisotropy Zxz/Zxy and J . The inset shows χzz(q).

For the details of the DOS calculations we refer to the SM
section [30]. The dx2−y2 solution found in Fig. 1(b) has
symmetry-imposed line nodes, with a gap that rises very
steeply away from the zone diagonals, as shown in Fig. 2
(a). The nodes give rise to the characteristic V-shaped
DOS at the Fermi level, as shown in Fig. 2(e). The s′

solution, which appears to be very prominent in a large
region of phase space also exhibits nodes, see Fig. 2(b),
but in general the nodes do not coincide with the nodes of
dx2−y2-wave. However, the β-pocket shows a suppressed
dx2−y2 gap in the region where the s′ solution has nodes.
Therefore, the TRSB solution of the type s′ + idx2−y2

will exhibit near-nodal behavior with a small DOS close
to the Fermi level, as seen in Fig. 2 (f). The helical state
gives rise to a more uniform spectral gap, see Fig. 2(c),
with near-nodal behavior only at the α pockets at the
zone diagonals. Thus, in this case, we find a more com-
plete suppression of the DOS at the smallest energies, see
Fig. 2(g). Finally, for the chiral solution, only segments
of the Fermi surface which are predominantly of xy or-
bital character, display a large gap, as can be deduced
by comparing the spectral gap of Fig. 2(d) with the or-
bital character of the Fermi surface displayed in the inset
of Fig. 1(d). Parts of the Fermi surface which are of
xz/yz character exhibit almost no gap, and thus there
remains a large number of electronic states close to the
Fermi surface as evident from Fig. 2 (h). We note that
this appears to agree with the findings of the recent work
by Wang et al. [26], where a chiral solution was found to
have low-lying states. The chiral state, however, appears
to be ruled out by the recent NMR results [27].

In Sr2RuO4 significant mass renormalizations have
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been identified from DMFT originating from the prox-
imity of the van Hove singularity [41] and Hund’s cou-
pling, driving the effective mass of the xy orbital larger
than the effective mass of xz/yz orbitals. To investigate
how this changes the gap solutions, we apply the same
approach as in Refs. [42, 43]. Thus, the bare electronic
operator is modified by ck,µ,s →

√
Zµck,µ,s and a differ-

ence in quasi-particle weights between the xy orbital and
the xz/yz orbitals is imposed by Zxz = Zyz > Zxy. The
quasi-particle weights dress the susceptibility[42]

[χ̃0]
µ̃1,µ̃2

µ̃3,µ̃4
→

√
Zµ1

√
Zµ2

√
Zµ3

√
Zµ4 [χ0]

µ̃1,µ̃2

µ̃3,µ̃4
, (7)

and the interaction Hamiltonian Eq. (3). In Fig. 3(a) we
show how the orbital-selective quasi-particle weights lead
to improved agreement with the spin susceptibility as
measured be neutron scattering[8–10, 32]. For example,
the signal at Q3 in Fig. 1(a) which originates from inter-
band nesting between the xy orbital and the xz/yz bands
has been reported by neutron scattering only in Ref.[32],
interpreted as a ridge of the Q1 peak with weaker inten-
sity.

A suppression of the response at Q3 as well as Q2 is
observed when we calculate the spin response in the case
of stronger mass enhancement of the xy orbital compared
to the xz/yz orbitals [41] (Zxz/Zxy > 1). This scenario
leaves the spin anisotropic response at Q1 the main mag-
netic feature of our calculation and provides a route to
closer agreement with neutron scattering observations.
In this approach, the linearized gap equation results in
either nodal s′ or dx2−y2 solutions, and a notable absence
of odd-parity pair states, as shown in the phase diagram
Fig. 3 (b). The large boundary between the two solutions
points to the possibility of a s′ + idx2−y2 gap structure
which could reconcile the properties of 1) a decrease in
Knight shift for in-plane fields at T < Tc, 2) nodal low-
energy electronic states available for transport, and 3)
signatures of TRSB [44, 45][46].

In summary we have provided a timely theoretical
study of the leading superconducting instabilities in
Sr2RuO4. We have discussed their spectral and mag-
netic properties and focused on recent neutron scatter-
ing and Knight shift measurements, which seem incon-
sistent with chiral triplet pairing and point to other pre-
ferred pair states for this material. Several possibilities
are discussed, including a rare helical triplet state and
more prevalent even-parity pair states which, as we have
shown, can be distinguished by future experiments.
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