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Two conducting quantum systems coupled only via interactions can exhibit the phenomenon
of Coulomb drag, in which a current passed through one layer can pull a current along in the
other. However, in systems with particle-hole symmetry – for instance, the half-filled Hubbard
model or graphene near the Dirac point – the Coulomb drag effect vanishes to leading order in the
interaction. Its thermal analogue, whereby a thermal current in one layer pulls a thermal current
in the other, does not vanish and is indeed the dominant form of drag in particle-hole symmetric
systems. By studying a quantum quench, we show that thermal drag, unlike charge drag, displays a
non-Fermi’s Golden Rule growth at short times due to a logarithmic scattering singularity generic to
one dimension. Exploiting the integrability of the Hubbard model, we obtain the long-time limit of
the quench for weak interactions. Finally, we comment on thermal drag effects in higher dimensional
systems.

Since its inception [1], the Coulomb drag phenomenon
– whereby a charge current in one layer pulls a recip-
rocal current in another through Coulomb interactions
alone – has shed light on the special role of interac-
tion effects in quantum transport [2]. Coulomb drag
measurements have been instrumental in studying the
microscopic structure of systems as diverse as double-
quantum well structures [3, 4], excitons in electron-hole
bilayers [5–8], quantum Hall states [9–13], Luttinger liq-
uids [14, 15], spin currents in two-dimensional electron
gases [16, 17], and bilayer graphene [18–24], among oth-
ers. From the theoretical point of view, the Coulomb
drag conductivity generally shows a rich dependence
with temperature, with each regime dominated by dif-
ferent microscopic processes, and has been generalized
in many directions [2]. Given the recent interest in the
hydrodynamic behavior of electrons in solids [25–27], an
analogy can also be made between the Coulomb drag and
the shear viscosity, two processes leading to the equal-
ization of currents in neighboring layers.

In light of this history, it stands to reason that the
Coulomb drag effect between thermal currents, first stud-
ied to our knowledge in Ref. [28] – in which a thermal
current in one layer may drag along a reciprocal ther-
mal current in the other through Coulomb interactions
– could elucidate the microscopic structure of quantum
systems as well. In fact, in one particularly interesting
class of quantum systems – those having particle-hole
symmetry – Coulomb charge drag effects are known to
vanish at leading order [21]. Momentum is transferred
between the layers at this order, but it cannot result in a
charge current [29]. This is not a straightforward effect
of symmetry, which would lead to vanishing at all or-
ders; rather the leading process in perturbation theory
is independent of the sign of the scattering potential,
as with the Born approximation, so that the currents
induced by particle-particle and particle-hole scattering
cancel. Such systems are prime candidates for the study
of thermal drag, as thermal drag need not vanish under
particle-hole symmetry, and we find it to be the domi-

FIG. 1. (a) The thermal Coulomb drag geometry con-
sidered in this paper. A conducting quantum system’s top
layer is held at a temperature gradient by connecting it to
two reservoirs at temperatures TH > TC , causing a thermal
current to flow; through quantum interactions U , a thermal
current is dragged in the bottom layer. (b) The source of
the divergent scattering process leading to the breakdown of
the usual Fermi’s Golden Rule in one-dimensional systems,
namely when all incoming and outgoing particles have the
same velocity v but differ in energy.

nant form of drag in such systems. Examples include the
Hubbard model at half filling, graphene near the Dirac
point, and superconductors probed at low energy, among
others.

In this Letter, we focus on thermal drag be-
tween particle-hole symmetric quantum systems, viewed
through the lens of a quantum quench of the inter-layer
interactions in a bilayer system. We find that thermal
drag does indeed dominate drag physics in these systems
and, in sharp contrast to charge drag, suffers from a scat-
tering singularity generic to one-dimensional band struc-
tures. This singularity leads to a violation of the näıve
Fermi’s Golden Rule, where the rate of change of the
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thermal current is logarithmic in time rather than con-
stant, in the thermodynamic limit. This implies that a
simple scattering rate analysis is generally incorrect, and
more sophisticated perturbation theory analysis must be
used; in particular, the approximation of linearizing the
spectrum cannot be used when dealing with thermal cur-
rents without some method of regulation.

A quench and a Kubo formula. To study the thermal
drag, let us consider the paradigmatic one-dimensional
Hubbard model,

H = −t
∑
〈ij〉,σ

c†i,σcj,σ + U
∑
i

(ni,↑ −
1

2
)(ni,↓ −

1

2
) (1)

where {c†i,σ, cj,σ′} = δijδσσ′ . Let us view the two spin
species as each forming separate quantum wires, with
on-site interactions coupling them. We note that the
limit of on-site interactions can be physically motivated
as originating from a screened Coulomb potential with
small screening length. Initialize one species, say spin-
down, in a thermal state at temperature T with some
small initial energy current, and initialize the other spin
species in a thermal state with no energy current (with
U = 0). Explicitly, since the free fermion chain may be
diagonalized by a simple Fourier transform with energies
Ek = −2t cos k and velocities vk = 2t sin k (assuming
periodic boundary conditions), such a state is given by

〈nσk〉 =
1

1 + exp(β(−2t cos k − µ))
− δσ↓ε sin(2k), (2)

with ε a small parameter ensuring the validity of lin-
ear response. The charge and thermal current operators
carried by the σ spin species are given respectively by
Jσ = L−1

∑
k vkn

σ
k and JσE = L−1

∑
k Ekvkn

σ
k , hence

this initial state has 〈JσE〉 = εδσ↓ and 〈Jσ〉 = 0 (dia-
grammed in Fig. 1(a)). In this setup, the spin-down
channel is the “drive” layer and the spin-up channel is
the “response” layer in the usual terminology of Coulomb
drag, with the caveat that the “drive” current is allowed
to relax (which does not change the short-time dynam-
ics). We note that, while somewhat unorthodox, this
quench interpretation of the Coulomb drag problem is
physically reasonable and allows for the use of techniques
from scattering theory and integrability that would be
inapplicable in an equilibrium description.

At time t = 0, let us quench on the interaction term
U . We are interested in the change over time of the heat
current in the spin-up channel. From the perspective of
linear response, one would expect that an initial thermal
current in the spin-down channel would drag along a
thermal current in the spin-up channel, leading to the
development of a temperature gradient for the spin-up
species that is proportional to the initial energy current.
This would give a thermal drag conductivity of

κD =
J

(1)
E

∇T (2)
(3)

where J
(1)
E is taken at time t = 0, and here (1) refers

to spin-up and (2) to spin-down. Now, generally speak-
ing, there is no perturbing Hamiltonian for a temper-
ature gradient, so there is no straightforward method
of deriving a Kubo formula for thermal conductivities.
One may argue, however, based on entropy production
in the system, that there exists an effective perturbing
Hamiltonian and from this derive a Kubo formula [30].
Adapting this method, we arrive at a Kubo formula for
the thermal drag conductivity [28][31],

κσσ
′

ab (q, ω) =
1

V T

∫ ∞
0

dte(iω−0+)t

∫ β

0

dλ〈JσQ,b(−q,−iλ)Jσ
′

Q,a(q, t)〉
(4)

with V the system size, σ and σ′ layer indices, q the
wavevector, JQ the heat current, and a and b spatial
indices (in the case of higher dimensional systems).

With this Kubo formula in hand, we can connect our
quench picture to the thermal drag conductivity by the
following argument: if the initial rate of change of the
energy current in the spin-down species is some rate
∂t〈J↑E〉 = Γ, then by the fluctuation-dissipation theo-
rem [32] we should expect that the two-point function
is exponentially decaying with the same rate Γ. This
would give κD ∼

∫∞
0
dteiωte−Γt = 1/(Γ − iω), which,

identifying Γ = 1/τ with τ a scattering time, would re-
produce the usual Drude relation. We caution that in
this case, however, a näıve Drude analysis will fail due
to the complicated behavior of the energy current post-
quench, which we examine below.

To calculate Γ, we seek the quantity ∂tn
↑
k, under the

perturbation of the Hubbard interaction. To lowest (sec-
ond) order in U ,

∂tn
↑
k = U2

∑
k2,k3,k4

Sk3k4kk2

sin(t∆E)

∆E
δ(∆k), (5)

where Sk3k4kk2
= (1 − n↑k)(1 − n↓k2)n↑k3n

↓
k4
− n↑kn

↓
k2

(1 −
n↑k3)(1− n↓k4) is the net Fermi factor for the inward and
outward scattering processes, ∆k = k + k2 − k3 − k4

and ∆E = Ek + Ek2 − Ek3 − Ek4 . In the usual Fermi’s
Golden Rule, one takes the limit of large t, which sends
sin(t∆E)/∆E → πδ(∆E) provided that the quantity
being integrated against does not diverge at ∆E = 0.
This is the case for Coulomb drag of charge currents,
which is well-behaved; however, this is not the case for
the energy current, as we shall see, and we must deal
with the divergence carefully.

Imposing momentum conservation, the energy current
grows as

∂tJ
↑
E =

2

L

∑
k

sin(2k)∂tn
↑
k. (6)

We can usefully rewrite this expression by moving the
sum on k to an integral in energy space of a quan-
tity G(E), integrating against a kind of “density of
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states” [33]. Focusing on half-filling µ = 0, the function
G(E) contains the essential divergence of the response
energy current, namely

G(E) ∝
∫
dk1dk3

∑
ν=1,2

F (k1, k2,ν , k3)

|v(k1 + k2,ν − k3)− v(k2,ν)|
(7)

with v(k) = ∂kE(k) ∝ sin k the group velocity, the
function F does not diverge, and ν indexes the solutions
to ∆E − E = 0. Clearly, the source of the divergence
is the difference of velocities in the denominator, corre-
sponding to a resonance of points in k space with differ-
ent energies but the same velocity. Physically, this shows
that the energy current operator diverges at small ener-
gies ∆E ≈ 0 which are directly probed by the sinc(t∆E)
term in perturbation theory, and it is because of this sin-
gular behavior that Fermi’s Golden Rule breaks down.

There are two conditions under which the denominator
diverges: the trivial case of k1 = k3, and the nontrivial
second solution. In the first instance, one can readily
see that the numerator also vanishes, and hence there
is no divergence. For the second solution, which occurs
here at k1 + k2− k3 = π− k2 but must occur somewhere
in a generic one-dimensional band structure, one finds
that the numerator also vanishes for a charge current
– and hence, it is well-behvaed – while it does not for
the energy current. The divergence is point-like, in the
sense that for every incoming k there is a finite set of
partners {k′} with the same velocity. That there must
be at least one partner is a consequence of the lattice, i.e.
the periodicity of the band structure (see Figure 1(b)).

At small but finite E, we can regularize the denomi-
nator, ultimately leading to a logarithmic divergence. A
careful accounting yields

g(E) = ε
4U2

(2π)3

∫ π

−π
dk

f(k)

|sin k/2| logE (8)

where g(E) = (G(E) + G(−E))/2 is the symmet-
ric part of G(E), f(k) = −2 sin2(k)n(Ek)n(−Ek), and
n(E) is the Fermi-Dirac distribution. Finally, using∫∞
−∞ dx log(x)sinc(xt) = −π(γ + log t)/t, with γ the

Euler-Mascheroni constant, and keeping only the domi-
nant term in the large t limit, we arrive at the result

∂tJ
↑
E

J↓E(t = 0)
= α log t+O(1), (9)

with

α(T ) =
U2

π2

∫ π

0

dk |u(k)|2 sin2 k csc(k/2)

1 + cosh(2tβ sin(k/2))
, (10)

where for generality, we have allowed for k-dependent
interactions, U(k) = Uu(k), and in the Hubbard model
with onsite interactions u(k) = 1. We remark that this
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FIG. 2. The growth of the heat and energy currents in the
bottom layer due to the Coulomb drag, to O(U2) in perturba-
tion theory. At half filling µ = 0, no charge drag occurs due to
particle-hole symmetry (red dots); this is no longer true away
from half filling (black dots). In both cases, thermal drag is
nonzero and the rate of change grows logarithmically in time
as α(T ) log t (red and black triangles), rather than saturating
to a constant as would be näıvely expected. Inset: the pref-
actor for this log growth α(T ) as a function of temperature.
Agreement with the analyical formula of Eq. 10 is excellent
(solid line); the asymptotics are α(T ) = 4U2T 2 log 2/π2 for
small T (dashed line) and α(T ) = 4U2/3π2 for large T (dot-
ted line).

logarithmic behavior is quite general: we expect it for
any lattice band structure in 1D, as such band struc-
tures must generically have points where v(k) = v(k′)
but E(k) 6= E(k′). Further, other kinds of interactions
only modify the prefactor of the log growth. This inte-
gral cannot be computed analytically, but for Hubbard,
the low- and high-temperature limits are readily ana-
lyzed. First, at low temperatures, the denominator is a
strongly peaked function about k = 0; expanding the nu-
merator in Taylor series and performing the integration
yields

α(T ) ≈
T�1

4U2 log 2

π2
T 2, (11)

in units of Hubbard hopping t = 1 and kB = 1. In
the high temperature limit the demoninator is approxi-
mately constant, yielding

α(T ) ≈
T�1

4U2/3π2. (12)

We have numerically checked this expression by ex-
actly summing Eq. 5 on system sizes of L > 3000 and
calculating ∂tJE and ∂tJ . The results are shown in
Fig. 2; the logarithmic growth of the energy current is
clear both at half-filling (µ = 0) and away from half-
filling (µ = −1.5). We recover the result that, as ex-
pected, there is no charge drag at half filling, confirming
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that thermal drag dominates in this regime, while we do
notice a drag thermopower effect away from half filling.
Finally, the observed dependence on temperature of the
prefactor of the log, obtained by fitting at various tem-
peratures, is in excellent agreement with Eq. 10, which
we integrate numerically and whose asymptotics we plot.
This confirms that the processes considered in this sec-
tion indeed dominate the thermal drag to an excellent
approximation.

A few remarks are now in order. First, the break-
down of Fermi’s Golden Rule for the energy current is
generic to one-dimensional systems, as any band struc-
ture will display the same kind of divergence. Second,
due to the divergence, the widespread technique of lin-
earizing the spectrum [34] will fail badly in analyses of
thermal drag. In this case, band curvature effects may
be included directly in the field theory and treated per-
turbatively [35]. Third, the timescale for the validity of
perturbation theory is parametrically reduced for ther-
mal drag calculations: perturbation theory holds only up
to a timescale t−1

∗ ∼ U2 logU . Finally, one may consider
the effects of adding a small magnetic field: to lowest or-
der, the field would simply shift the chemical potential
in the two species in opposite directions [36], effectively
breaking particle-hole symmetry. In that case, we no
longer expect a vanishing charge drag. However, the
logarithmic growth of the response heat current would
remain, as it is present for any chemical potential, being
a consequence of the band structure.

To access longer times, we make the approximation
of a linear spectrum (Luttinger liquid) and regulate the
breakdown of Fermi’s Golden Rule [37]. Linearizing the
spectrum produces a left- and a right-moving mode, de-
scribed by wavevector qL/R = k ± kF with dispersion
relation E(qL/R) = ∓vF qL/R. We must then consider
8 possible scattering channels: two forward scattering
channels, two Umklapp channels, and four backward
scattering channels. For simplicity, we slightly modify
the setup such that one spin species is kept at a temper-
ature gradient with k < 0 at TL and k > 0 at TR, with
the other species in the ground state (T = 0).

Analyzing these possible scattering channels, we find
that, while the Umklapp and backscattering channels
give a finite rate, the forward scattering channel leads
to a divergence with system size, a one-dimensional in-
carnation of the well-known “collinear scattering singu-
larity” in Dirac-dispersing systems [2, 38, 39]. This is
due to the fact that, for the forward scattering channel,
conservation of energy and momentum become the same
constraint, leading to a delta function squared appear-
ing under the scattering integral. This type of divergence
was noted in Ref. [40] in the case of Coulomb drag for
spinful Luttinger liquids. To recover a finite answer, it
was proposed that one go past lowest order perturba-
tion theory, inserting the RPA propagator in place of
the bare propagator in the scattering integral (dubbed
the “generalized Fermi’s golden rule”). In our case, it
amounts to taking the incoming particles to have veloc-

ity vF while the outgoing particles have velocity u, the
Luttinger velocity, which is interaction dependent. Un-
der this prescription, we find a heat current growth rate
that is actually first-order in the interaction U ,

∂tJ
↑
E ∼ U

2π4 log 2

3~vF
k3
B(T 3

R − T 3
L), (13)

due to the interaction-renormalized outgoing velocity
cancelling a power of U . In sum, due to the unique diver-
gences of heat drag as opposed to charge drag, we expect
a logarithmic heat current growth rate at the shortest
times that is second order in U , followed by a longer
regime of heat current growth rate that is constant in
time and first order in U . We emphasize that the charge
drag in particle-hole symmetric systems vanishes to low-
est order, and only enters at order U3 (if at all); hence
thermal drag is the dominant form of drag physics in
this broad class of systems.

Long-time limit and higher dimensions. Generally
speaking, the long-time limit of this quench is outside
the realm of validity of perturbation theory, and there-
fore inacessible. However, here we may exploit the inte-
grability of the one-dimensional Hubbard model to make
progress [41]. In particular, due to its integrability, the
one-dimensional Hubbard model hosts a tower of con-
served quantities, the number of which is extensive in
system size. One such quantity, known as Q3, differs
from the total energy current operator only by a term of
order U ; that is,

JE = t2
∑
l,σ

i (c†l+1,σcl−1,σ − c†l−1,σcl+1,σ)

− Ut

2

∑
l,σ

(jl−1,σ + jl,σ)(nlσ̄ − 1/2),

which takes the same form as Q3 except for a factor of
2 in the term proportional to U [42]. This implies that
in the limit of small U , JE ≈ Q3 and is hence conserved.
(We note that even in the limit of stronger U , the over-
lap of JE with Q3 will be conserved, leaving some energy
current in the final state.) Under the assumption of ap-
proach to a generalized Gibbs ensemble final state [43]
with this same value of Q3, we expect that the energy
current will be equally divided between the two wires.
That is,

J↑E(t→∞) = J↓E(t→∞) =
J↓E(t = 0)

2
. (14)

The conservation of the energy current is likely a
special feature due to the integrability of the Hubbard
model, but we remark that in this case it leads to an in-
triguing hydrodynamic transport of energy current rem-
iniscent of the Dirac fluid [44].

Since the source of the divergent heat drag is related
to special properties of scattering in 1D, we do not ex-
pect the same divergence to appear generically for higher
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dimensional systems. As a check, we have considered
the Hubbard model on the square lattice with nearest-
neighbor hopping [45]. We have numerically explored
this model for various values of the chemical potential
and temperature on system sizes of up to Lx = Ly = 100.
We find that the thermal drag indeed dominates near
half-filling, and it does not appear to be divergent. We
defer an exhaustive analysis of the two-dimensional case
to future work.

Discussion. We have analyzed a thermal analogue of
the Coulomb drag in interacting quantum systems with
particle-hole symmetry via a quantum quench in the
Hubbard model. We have found that, due to the vanish-
ing of the charge Coulomb drag, the thermal drag effect
dominates. In one dimension, its growth is drastically
different than the charge drag due to the structure of
the energy current operator: the short-time limit shows
logarithmic non-Fermi’s golden rule growth, followed by
a longer regime of linear growth given by a generalized
Golden rule, with the late-time limit in this case obtained
from integrability arguments.

We expect these conclusions to apply to a broad range
of experimentally realizable systems, including perhaps
most prominently graphene near charge neutrality. It is
an interesting question whether some components of the
thermal Coulomb drag may be topologically quantized in
certain systems, especially in light of recent experiments
on the thermal Hall effect at nonchiral Hall edges [46].
We emphasize that, despite the vast literature on the
charge Coulomb drag, the thermal drag effect is largely
unexplored [47], and is ripe for further study.
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