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Heating rates in periodically driven strongly interacting quantum many-body systems
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We study heating rates in strongly interacting quantum lattice systems in the thermodynamic
limit. Using a numerical linked cluster expansion, we calculate the energy as a function of the driving
time and find a robust exponential regime. The heating rates are shown to be in excellent agree-
ment with Fermi’s golden rule. We discuss the relationship between heating rates and, within the
eigenstate thermalization hypothesis, the smooth function that characterizes the off-diagonal matrix
elements of the drive operator in the eigenbasis of the static Hamiltonian. We show that such a
function, in nonintegrable and (remarkably) integrable Hamiltonians, can be probed experimentally
by studying heating rates as functions of the drive frequency.

PACS numbers: 02.30.Lt, 02.60.-x, 05.30.Jp, 05.70.Ln, 75.10.Jm

Periodic perturbations are a ubiquitous tool to excite
and probe quantum systems and study their response
functions. Recent developments in theory and experi-
ments have expanded the scope of periodic driving to
generate effective magnetic fields [1–4], as well as to en-
gineer topologically non-trivial band structures [5–8] and
novel time-crystalline phases [9–14]. However, under pe-
riodic driving, generic many-body interacting systems are
expected to heat up and (for a bounded spectrum, typical
of lattice fermions and spins) equilibrate at long times to
states that are effectively at infinite temperature [15, 16].

Driving at high frequencies, because of prethermal-
ization [17–30], has been proposed to slow down heat-
ing [10, 31–34]. It results in initial fast pre-thermal
dynamics towards time-periodic steady states (prether-
mal states) of effective local Hamiltonians [35–38], before
thermalization dynamics eventually results in featureless
“infinite-temperature” states [15, 16, 39, 40]. Prether-
malization is a universal phenomenon that occurs dur-
ing dynamics in isolated [30] and open [27, 28] systems
whenever conservation laws are weakly broken. Numer-
ical studies of prethermalization and thermalization, or,
in general, of energy absorption in driven strongly inter-
acting systems with many particles (or spins) are chal-
lenging. Progress has been achieved using massively par-
allel Krylov subspace methods [32], density matrix trun-
cation [41], and t-DMRG [42], but there is a dearth of
computational techniques to study generic models in ar-
bitrary dimensions.

Here, we report on the implementation of a numerical
linked cluster expansion (NLCE) for driven systems. NL-
CEs can be used to study arbitrary interaction strengths
in arbitrary dimensions. They were originally introduced
to study thermal equilibrium ensembles [43], where they
outperform full exact diagonalization calculations [44].
NLCEs were recently implemented to study thermaliza-
tion [45] and quantum dynamics under time-independent
Hamiltonians in one [30, 46] and two [47, 48] dimensions,
and combined with dynamical quantum typicality [49].
We use them to determine heating rates in strongly in-
teracting one-dimensional (1D) lattices in the thermody-

namic limit. The numerically obtained rates are shown
to agree with Fermi’s golden rule predictions. We ar-
gue that, in addition to helping quantify the stability of
prethermal states, heating rates can be used to probe the
structure of the off-diagonal matrix elements of the drive
operator in the eigenstates of the static Hamiltonian.

We consider a time-periodic Hamiltonian of the form
Ĥ(τ) = Ĥ0 + g(τ)K̂, where Ĥ0 is the static Hamilto-
nian and g(τ)K̂ is a weak time-periodic perturbation
of strength g, period T = 2π/Ω, and zero time aver-
age. The system is initialized (at τ = 0) in a state
ρ̂I = exp[−βIĤI ]/Tr{exp[−βIĤI ]} that is a thermal
equilibrium state of an initial static Hamiltonian ĤI

at an inverse temperature βI . At stroboscopic times
τ = nT (n = 0, 1, 2, . . . ), the density matrix ρ̂(τ)

can be written as ρ̂(τ) = (ÛF )nρ̂I(Û†F )n, where ÛF =

T exp[−i
∫ T

0
Ĥ(t)dt] is the (time ordered T ) Floquet evo-

lution operator (we set ~ = 1). We assume that ĤI , Ĥ0,
and K̂ are translationally invariant sums of local oper-
ators, and that they are mutually noncommuting (non-
trivial dynamics occurs even if g = 0).

The obvious conservation law broken by g(τ)K̂ is en-
ergy conservation. For sufficiently small g in the ther-
modynamic limit, we expect prethermalization to occur
(independently of the value of Ω), wherein the system
quickly relaxes to the equilibrium state of Ĥ0 described
by a (generalized) Gibbs ensemble [up to O(g) correc-
tions]. The relaxation towards “infinite temperature” can
be described by a slowly evolving (generalized) Gibbs en-
semble of Ĥ0, characterized by the instantaneous expec-
tation values of the conserved quantities of Ĥ0 [30]. The
dynamics of those quantities is described by autonomous
equations, with drifts given by Fermi’s golden rule [30].

We study the evolution of the energy defined by
the static Hamiltonian, which is also the time-averaged

Hamiltonian Ĥ(τ) = Ĥ0, E(τ) = Tr[Ĥ0ρ̂(τ)]. We con-
sider general time-periodic perturbations, which can be
Fourier decomposed as g(τ)K̂ =

∑
m>0 2gm sin(mΩτ)K̂.

After a short initial transient dynamics, in the linear re-
sponse regime, the system absorbs energy independently
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from each Fourier mode m. The average rate of energy
absorption over a cycle is Ė(τ) =

∑
m>0 Ėm(τ) with, as

expected from Fermi’s golden rule,

Ėm(τ) = 2πg2
m

∑
i,f

|〈E0
f |K̂|E0

i 〉|2(E0
f − E0

i )P 0
i (τ)

×δ(E0
f − E0

i ±mΩ), (1)

where |E0
i 〉 (|E0

f 〉) are the eigenkets of Ĥ0 with eigenen-

ergies E0
i (E0

f ), and P 0
i (τ) = 〈E0

i |ρ̂(τ)|E0
i 〉 is the pro-

jection of ρ̂(τ) into the basis of Ĥ0. The latter de-
fines the so-called diagonal ensemble (DE) at time τ [50],
ρ̂DE(τ) = P 0

i (τ)|E0
i 〉〈E0

i |. ρ̂DE(τ) is expected to char-

acterize the equilibrated state under Ĥ0 at time τ [51].
We define the rate Γ(τ) =

∑
m>0 Γm(τ), where Γm(τ) =

Ėm(τ)/[E∞ −E(τ)] is the rate for Fourier mode m, and
E∞ is the energy at infinite temperature. Only when
sufficiently small is that one expects |E∞ − E(τ)| to be
an exponential function, and Γ(τ) to be meaningful.

We focus on 1D lattice system of hard-core bosons,
with Ĥ0 and K̂ given by

Ĥ0 =
∑
i

[(
−t b̂†i b̂i+1 − t′ b̂

†
i b̂i+2 + h b̂†i

)
+ H.c. (2)

+V

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)
+ V ′

(
n̂i −

1

2

)(
n̂i+2 −

1

2

)]
,

K̂ = −
∑
i

(
b̂†i b̂i+1 + H.c.

)
, (3)

where standard notation was used [52]. We drive the
system with a square wave g(τ) = g sgn[sin(Ωτ)], and
set t = V = 1 (our unit of energy and frequency). Ĥ0

is integrable for t′ = V ′ = h = 0 (and mappable to
the spin-1/2 XXZ Hamiltonian [52]), and nonintegrable
for nonvanishing t′, V ′, and h. We study integrable and
nonintegrable (with t′ = V ′ = 0.8 and h = 1.0) cases,
and select ĤI to have the same terms as Ĥ0 [Eq. (2)]
but with different nearest neighbor coupling parameters
(tI = 0.5 and VI = 2.0).

We implement a NLCE to calculate the energy per
site e(τ) = E(τ)/L at stroboscopic times in the ther-
modynamic limit (L → ∞). Within NLCEs, e(τ) is
expressed as a sum over the contributions of all con-
nected clusters (c) that can be embedded on the lattice,
e(τ) =

∑
cM(c) ×W e

c (τ), where M(c) is the number of
“embeddings” (per site) of cluster c, and W e

c (τ) is the
weight of e(τ) in cluster c. W e

c (τ) is obtained recur-
sively using the inclusion-exclusion principle: W e

c (τ) =
Ec(τ) −

∑
c′⊂cW

e
c′(τ), where c′ denotes the connected

sub-clusters of c and Ec(τ) = Tr[Ĥc
0 ρ̂c(τ)] is the energy

in cluster c [Ĥc
0 is the static Hamiltonian, and ρ̂c(τ) is

the density matrix at time τ , both in cluster c]. The
series starts with the smallest cluster (a site) for which
Wc(τ) = Ec(τ). For each cluster, Ec(τ) is calculated nu-
merically using full exact diagonalization. We use max-
imally connected clusters (clusters with contiguous sites

10
-2

10
-1

|e
 (

τ 
)|

NLCE-16
NLCE-17

0 40 80 120
τ

6

9

12

15

|e
 (

τ 
)|

 x
1
03

NLCE-17
NLCE-18

0.1 1g

10
-3

10
-1

R
at

e

NLCE-16
NLCE-17

0.1 1

10
-3

10
-1

Fermi-17
Fermi-18

0.23g
1.94

Exp fit

Exp fit

0.1 1g

10
-4

10
-2

R
at

e

NLCE-17
NLCE-18

0.1 1

10
-4

10
-2

Fermi-19
Fermi-20

0.038g
1.99

g = 0.05

g = 0.2

g = 0.05

g = 0.8

g = 0.2

g = 0.8

(a)

(b)

FIG. 1. (Main panels) Absolute value of the energy per site

|e(τ)| vs τ for (a) the nonintegrable and (b) the integrable Ĥ0

for three strengths g = {0.05, 0.2, 0.8} of the drive, a period
T = 1.0, and βI = (30)−1. Results (at stroboscopic times) are
obtained using NLCE to: (a) 16 (NLCE-16) and 17 (NLCE-
17) orders, and (b) 17 (NLCE-17) and 18 (NLCE-18) orders.
The solid lines show exponential fits to the highest NLCE
order. (Insets) Rates obtained in fits, as those depicted in
the main panels, for the two highest NLCE orders. For all
values of g, the fits for the nonintegrable Ĥ0 are done for
times 3 ≤ τ ≤ 20 for NLCE-17 and 3 ≤ τ ≤ 15 for NLCE-16,
while for the integrable Ĥ0 they are done for times 2 ≤ τ ≤ 8
for NLCE-18 and 2 ≤ τ ≤ 7 for NLCE-17. The Fermi golden
rule predictions (open symbols) are evaluated using full exact
diagonalization in chains with: (a) 17 and 18 sites (Fermi-17
and Fermi-18) and (b) 19 and 20 sites (Fermi-19 and Fermi-
20), and periodic boundary conditions. Errorbars indicate the
fitting errors for the NLCE rates, and the standard deviation
from averages over different values of ∆E and τ for the Fermi
golden rule predictions [53]. Power-law fits (αgγ) of the rates
in both insets are done for the highest order of the NLCE in
the interval 0.05 ≤ g ≤ 0.3.

and all possible bonds) as they are optimal to study dy-
namics in chains in the presence of nearest and next-
nearest neighbor interactions [45, 46, 54]. The order of
the NLCE is set by the number of sites of the largest
cluster considered. For nonintegrable Ĥ0, we compute 17
orders of the NLCE (after exploiting all symmetries, the
dimension of largest sector of the Hamiltonian is 32,896).
When Ĥ0 is integrable, due to particle number conserva-
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FIG. 2. (Main panel) Absolute value of the energy per site
|e(τ)|, normalized by its initial value |e(0)|, for a periodically

driven nonintegrable Ĥ0 with g = 0.5 and T = 1.0, for initial
thermal states of ĤI at different inverse temperatures βI . We
show results for 16 and 17 orders of the NLCE (NLCE-16 and
NLCE-17, respectively), and exponential fits to the NLCE-
17 results. (Inset) Rates obtained from exponential fits to
NLCE-17 for 3 ≤ τ ≤ 20 (as those in the main panel) and
NLCE-16 for 3 ≤ τ ≤ 15 vs βI , for g = 0.2 and g = 0.5. We
also report Fermi’s golden rule predictions obtained using full
exact diagonalization in chains with 17 and 18 sites (Fermi-17
and Fermi-18) and periodic boundary conditions.

tion, we are able to compute 18 orders of the NLCE (the
dimension of the largest sector in this case is 21,942).

In the main panels of Fig. 1, we show NLCE results for
|e(τ)| vs τ for (a) the nonintegrable and (b) the integrable
static Hamiltonians, for three strengths g = 0.05, 0.2,
and 0.8 of the drive, for an initial thermal equilibrium
state of ĤI at an inverse temperature βI = (30)−1. The
exponential fits, which exclude the short-time transient
dynamics and long times at which the NLCE does not
converge, make apparent that the approach of e(τ) to the
infinite temperature energy (E∞/L = 0) is exponential.
The rates obtained from such fits are plotted in the insets
of Fig. 1 vs g, for the two highest orders of the NLCE.
They agree with each other, indicating that the fits are
robust. The rates are ∝ g2 and are in excellent agreement
with Fermi’s golden rule [Eq. (1)], evaluated numerically
using full exact diagonalization in chains with periodic
boundary conditions [53].

It follows from eigenstate thermalization for noninte-
grable Hamiltonians [50, 51, 55, 56] (generalized eigen-
state thermalization for integrable Hamiltonians [57, 58])
Ĥ0 that the predictions of ρ̂DE(τ) for few-body operators
agree with those of the thermal (generalized Gibbs) en-
semble [51, 58–60]. We first focus on the case in which Ĥ0

is nonintegrable with no local conservation law. In this
case, the inverse temperature β(τ) alone characterizes
the thermal (grand canonical) ensemble at τ , ρ̂GE(τ) =
exp[−β(τ)Ĥ0]/Tr{exp[−β(τ)Ĥ0]}, where β(τ) is deter-

mined by the condition Tr[Ĥ0ρ̂GE(τ)] = Tr[Ĥ0ρ̂(τ)].
Only when β(τ) � 1 is that one expects Γ(τ) to be-
come independent of β(τ), and E(τ) to approach E∞ as
a single exponential.

To illustrate this, in the main panel of Fig. 2 we plot
|e(τ)| (normalized by its initial value |e(0)|) for various
initial inverse temperatures βI ∈ [0.01, 0.5]. The normal-
ized energies e(τ)/e(0) for βI = 0.033 and 0.01 exhibit
a nearly identical exponential decay (within the times at
which the NLCE has converged) implying that Γ is in-
dependent of βI [hence, of β(τ)] when βI . 0.03. For
βI & 0.2, one can still use exponentials to fit e(τ), but
the rates obtained depend on βI . In the inset in Fig. 2,
we report the rates obtained from such fits vs βI using
two orders of the NLCE and for two values of g. The
rates from the two orders of the NLCE agree with each
other and agree well with Fermi’s golden rule predictions.
(Worse agreement is seen for g = 0.5 than for g = 0.2 due
to the effect of higher order corrections.) The increase in
the rate seen in the inset in Fig. 2 with decreasing βI is
the one expected to occur as a function of driving time
for initial states that are not in the regime βI � 1.

Next we focus on the dependence of the heating rates
on Ω. In nonintegrable systems, the eigenstate thermal-
ization hypothesis (ETH) [50, 51, 55, 56] allows one to
compute Γm(τ). After resolving all symmetries of the
static Hamiltonian, the ETH ansatz for the matrix el-

ements K
(s)
i,f = 〈E0

i |K̂|E0
f 〉 of the operator K̂ (used as

drive) in each block diagonal sector s of Ĥ0 has the form
[51, 61]

K
(s)
i,f = K(s)(E)δi,f + [D(s)(E)]−1/2f

(s)
K (E,ω)Ri,f , (4)

where E = (Ei + Ef )/2, ω = Ef − Ei, D
(s)(E) is the

density of states of Ĥ0 in sector s at energy E, and Ri,f

is a random variable with zero mean and unit variance.
K(s)(E) and f

(s)
K (E,ω) are smooth functions of their ar-

guments.
Using Eqs. (1) and (4), changing sums over eigenstates

by integrals over energy, replacing ρ̂DE(τ) by ρ̂GE(τ) and
assuming high temperature [β(τ) � 1], one obtains the
following expression for the heating rate [53]

Γm =
2π(mΩgm)2

Tr(Ĥ2
0 )

∑
s

∫ E(s)
max−mΩ/2

E
(s)
min+mΩ/2

dE |f (s)
K (E,mΩ)|2

×D(s)(E +mΩ/2)D(s)(E −mΩ/2)/D(s)(E), (5)

where E
(s)
min (E

(s)
max) is the minimum (maximum) energy in

sector s, and mΩ is smaller than E
(s)
max−E(s)

min (otherwise
there is no linear response heating for that mode).

In Fig. 3(a), we compare heating rates (for the nonin-
tegrable case and normalized by g2) obtained from dy-
namics evaluated with NLCE (see inset) and the ones
predicted by Eq. (5) [53]. NLCE results are not reported
for small and large values of Ω because the time interval
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FIG. 3. (Main panels) Heating rates (normalized by g2) vs Ω for (a) the nonintegrable and (b) the integrable Ĥ0, for g = 0.2
and g = 0.3. Rates obtained from exponential fits of the dynamics (as in the insets) are shown as symbols for NLCE to (a)
15 (NLCE-15) and 16 (NLCE-16) orders, and (b) to 17 (NLCE-17) and 18 (NLCE-18) orders. Rates obtained from Eq. (5)
evaluated using full exact diagonalization in periodic chains are shown as lines for (a) 18 (Γ18) and 19 (Γ19) sites, and (b) 20
(Γ20) and 21 (Γ21) sites. We also show rates of the Fourier mode m = 1 in Eq. (5) for (a) 19 [Γ19

m=1] and (b) 21 [Γ21
m=1] sites, as

well as exponential fits of the results at high Ω. (Insets) Absolute value of the energy per site |e(τ)| vs τ , using NLCE to (a) 15
(NLCE-15) and 16 (NLCE-16) orders and (b) 17 (NLCE-17) and 18 (NLCE-18) orders, for g = 0.3 and three different driving
periods T = 2π/Ω. Exponential fits to the highest order of the NLCE are shown as solid lines. The rates reported in the main
panels are obtained from exponential fits for (a) 3 ≤ τ ≤ 15 for NLCE-16 and 3 ≤ τ ≤ 12 for NLCE-15, and (b) 2 ≤ τ ≤ 8 for
NLCE-18 and 2 ≤ τ ≤ 7.5 for NLCE-17, for all g and T (errorbars indicate fitting errors).

in which the NLCE converges is not sufficiently long to
produce robust exponential fits. The normalized rates
for g = 0.2 and g = 0.3 are nearly identical to one an-
other, and are well described by Eq. (5). For high Ω, we
find that the evaluation of Eq. (5) results in heating rates
that can be well described by an exponential in Ω. This
is consistent with rigorous bounds [10, 31, 36].

When Ĥ0 is integrable (the spin-1/2 XXZ limit), the
prethermal states are described by a generalized Gibbs
ensemble (GGE) ρ̂GGE(τ) [62–64]. When ρ̂I is a ther-
mal state with βI � 1 (or in general after long driving
times), ρ̂GGE(τ) ' ρ̂GE(τ) with β(τ) � 1 [65]. In this
regime, Eq. (5) gives the heating rates for the integrable
static Hamiltonian provided that there is a well defined

|f (s)
K (E,ω)|2. In Fig. 3(b), we show the equivalent of

Fig. 3(a) but for the integrable case. Despite the dif-
ferences between the dependence of the heating rates on
Ω in the nonintegrable and integrable cases, the heating
rates in the latter are described by Eq. (5) and, for high
Ω, they are well described by an exponential in Ω.

The previous results show that heating rates can be

used to probe the function f
(s)
K (E,mΩ) in nonintegrable

and integrable systems. Still, Eq. (4) involves the density
of states. For large systems sizes, since E is extensive but
Ω is not: D(s)(E +mΩ/2)D(s)(E −mΩ/2) ' [D(s)(E)]2

and E
(s)
min,max±mΩ/2 ' E(s)

min,max. Using the saddle point

approximation to compute the integral in Eq. (5), and
using that D(s)(E∞) is maximal, the heating rate for
Fourier mode m in the thermodynamic limit (Γ∞m ) can
be written as

Γ∞m =
2π(mΩgm)2

Tr(Ĥ2
0 )

∑
s

|f (s)
K (E∞,mΩ)|2Z(s), (6)

where Z(s) is the Hilbert space dimension of sector s.
Thus the rate for Fourier mode m = 1, which Fig. 4
shows to be in excellent agreement with the heating rates
obtained from the NLCE dynamics for a wide range of

values of Ω, gives the average |f (s)
K (E∞,Ω)|2 over all sec-

tors of the Hamiltonian in the thermodynamic limit [53].
In summary, we studied heating in strongly interact-

ing driven lattice systems and showed that, at sufficiently
high effective temperatures ([β(τ)]−1 & 2), it can be
well characterized by rates no matter whether the sys-
tem is nonintegrable or integrable. We also showed that
the rates agree with Fermi’s golden rule predictions for
both nonintegrable or integrable cases. We then argued
that heating rates can be used to probe the structure
of off-diagonal matrix elements of the operator used to
drive the system, in the eigenstates of the static Hamil-
tonian. Our results suggest that there is a well de-

fined |f (s)
K (E,Ω)|2 in integrable interacting systems. This

has been confirmed in a recent full exact diagonalization
study of the spin-1/2 XXZ chain [66], and needs to be
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further explored to place it on equal footing with what
is known for quantum chaotic systems [51, 67–72].
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