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We discuss quasi one-dimensional magnetic Mott insulators from the pyroxene family where spin
and orbital degrees of freedom remain tightly bound. We analyze their excitation spectrum and
outline the conditions under which the orbital degrees of freedom become liberated so that the
corresponding excitations become dispersive and the spectral weight shifts to energies much smaller
than the exchange integral.
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Introduction.—During the last 30 years a great theo-
retical effort has been directed at the research on quan-
tum liquids where spin ordering either does not occur
or transition temperature is strongly reduced by fluctu-
ations. Quantum liquids play an important role in all
kinds of theoretical scenarios for exotic matter states.
Quantum fluctuations increase when the symmetry man-
ifold is extended from the ubiquitous SU(2) to a higher
symmetry, for instance, SU(N). In practice such exten-
sion can occur only when orbital degrees of freedom are
included which is difficult since the orbital degeneracy is
usually lifted by the lattice. In this paper we suggest that
magnetic insulators from the so-called pyroxene family
may provide a possible path to overcome these difficul-
ties.

Pyroxenes are quasi one-dimensional Mott insulators
where spin and orbital degrees of freedom remain tightly
bound even at low energies. They compose a rich class of
minerals with chemical formula AM(Si,Ge)2O6 where A
is mostly an alkali metal element and M a trivalent metal
element. For example, greenish NaAlSi2O6 is a famous
Chinese jade called Fei Tsui. The systems with partially
filled d shells of the M ions commonly possess nontriv-
ial magnetic properties ranging from antiferromagnetic
(AF), ferromagnetic (FM), and spin glassy and likely
to be multiferroics, as seen in NaFeSi2O6, LiFeSi2O6,
and LiCrSi2O6 [1]. Their crystal structures contain char-
acteristic zigzag chains of edge-sharing MO6 octahedra
(Fig. 1). The chains are bridged by the O-Si-O or O-
Ge-O bonds, or, in other words, are separated by SiO4

or GeO4 tetrahedra, thus confining the motion of valence
electrons to the chains.

In this paper we discuss pyroxenes with M = Ti and
Ru, where the lowest t2g-orbitals well separated from the
e2g ones are occupied either by a single electron (Ti)
or a single hole (Ru). At present only NaTiSi2O6 has
been experimentally studied. Like the V4+ ions in the
straight-chain system VO2, the Ti3+ ions in NaTiSi2O6

have the 3d1 valence electron configuration and undergo
the Ti-Ti dimerization upon cooling. The zigzag chain
pattern makes it more apparent that all spin, orbital,
and lattice degrees of freedom are active, leading to two-
orbitally assisted Peierls transition [2–4] that generates

FIG. 1. Crystal structure of NaMSi2O6.

spin-singlet dimers on the short Ti-Ti bonds [5] with the
spin gap of ∼ 53 meV [6], rather than a gapless long-
range antiferromagnetic (AF) state in VO2. Note that
the ordinary spin-Peierls transition seems not to work
here because the doubled periodicity is not consistent
with the quarter filling of the electronic bands. An early
density-functional theory (DFT) study focused on the
high-temperature non-dimerized structure of NaTiSi2O6

attributed the spin gap to the spin-one (S = 1) Haldane
type due to the ferromagnetic Ti-Ti interaction [7]. A
subsequent DFT calculation with a U correction showed
that the dominant magnetic interaction was the AF one
along the Ti-Ti short bonds, supporting the picture of
S = 0 spin dimers [8]. However, an outstanding puzzle is
that the heat capacity data show the gap ∼ 10 meV [5]
suggesting the existence of softer excitations and stronger
quantum fluctuations.

We approach the problem using a combination DFT,
analytic, and time-dependent density-matrix renormal-
ization group (DMRG) methods to study their orbital
and spin dynamics. The stronger quantum fluctuations
originate from the involvement of the third t2g orbital,
which becomes active when the oxygen-atom-mediated
electron hopping integral is comparable to the direct hop-
ping integral between neighboring M atoms [1, 9, 10].
Hubbard model and the Sutherland Hamiltonian.—We

start with a microscopic derivation of the three-orbital
model Hamiltonian [11] assuming a single electron or hole
occupation of the t2g orbital. The strong on-site Coulomb
interaction U(N − 1)2 opens a charge gap ∼ U prevent-
ing direct transitions to states with different occupation
number. To describe the low energy dynamics we have to
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FIG. 2. Spin spectral function in the folded Brillouin Zone for
for various values of t2/t1 and the crystal field. With increase
of ∆/J or the anisotropy the spectral weight shifts toward
the dimerized configuration where the singlet-triplet gap is
equal to 2J = 4t22/(U − ∆) corresponding to the breaking of
a dimer.

integrate out the high-energy degrees of freedom as it is
done in the conventional SU(2) invariant Hubbard model
[26]. Here, each M cation is coordinated with six O2−

anions and the MO6 octahedra are edge sharing to form
the zigzag chain in the crystallographical a axis (Fig. 1).
The five d-shell orbitals of the M ion are well separated
by the ligand field into the high-energy eg (3z2 − r2 and
x2 − y2) and low-lying t2g (xy, yz, zx) orbitals. The
latter orbitals are relevant to the low-energy physics. If
one neglects all factors leading to violation of the SU(6)
symmetry, such as the splitting of the t2g orbitals and
the Hund’s interaction and adopts a diagonal tunneling
matrix with identical matrix elements t for all orbitals,
the result for U � t is the SU(6)-symmetric Sutherland
Hamiltonian:

H = J
∑
k

P o,sk,k+1, J =
2t2

U
(1)

where P o,s = P o ⊗ P s is the permutation operator act-
ing in 6×6-dimensional space of spin and orbital quantum
numbers and P sk,k+1 = 2Sk · Sk+1 + 1/2 and P ok,k+1 =

2TkTk+1 + 1/2, where Sa, T a are spin and isospin S=1/2
operators acting on the spin and orbital subspaces, re-
spectively. Model (1) is integrable, the spectrum con-
sisting of collective orbital and spin excitations is gapless
[15]. The excitations (spinons) are fractionalized, they
carry spin and orbital quantum numbers of electrons (ex-
cept the charge one which is gapped). The spin spectral

function is presented on Fig. 2a.
In reality the SU(6) symmetry is broken due to the

crystal field and anisotropy of the exchange integrals orig-
inating from (i) the difference between tunneling matrix
elements of different orbital states and (ii) the Hund’s
coupling. Since the lowest d-orbital is occupied by one
electron(hole), the Hund’s coupling affects only the ex-
cited states. As shown in Fig. 3(a), the strong electron
hopping integrals are the head-on dzx − dzx (between
the 1st and 2nd Ti atoms) and the head-on dxy − dxy
(between the 4th and 5th Ti atoms), whose strength is
referred to as t1 (depicted as solid arcs in Fig. 3(b)). Yet,
for the edge-sharing t2g connections, it is known that the
oxygen p-orbital-mediated shoulder-to-shoulder hopping
paths, e.g., the dzx − pz − dyz between the 2nd and 3rd
M atoms in Fig. 3(a), may be as strong [1, 9, 10]. These
indirect paths are referred to as t2 (the dashed lines in
Fig. 3(b)). Note that the M yz orbitals are involved
in the t2 paths only [Fig. 3(b)]; therefore, in the limit
of small t2 or large t2g splitting ∆ (i.e., the yz orbital
is higher in energy by ∆ than the xy and zx orbitals),
dyz becomes irrelevant, yielding the minimal two-orbital
model [2–4]. On the other hand, for considerable t2 and
small ∆, the t1 and t2 paths seem to be highly entangled
as shown in Fig. 3(b); however, following the red, blue,
and green lines, we found that they can be completely de-
coupled to form three degenerate hopping paths as shown
in Fig. 3(c). In this sense, the most remarkable property
of NaMSi2O6 is that its electronic band is exactly 3 times
degenerate. In real space the degeneracy is reflected as
the following property of the single electron wave func-
tions: ψb(k + 1) = ψb(k) = ψc(k − 1).

The corresponding band Hamiltonian in notations de-
picted on Fig. 3(c) has three M sites in the unit cell and
is expressed as follows:

H = −
∑

k,α=a,b,c

ψ+
α,σ(k)

 0 t1 t2e−3ik

t1 0 t2
t2e3ik t2 ∆

ψα,σ(k)

The spectrum is determined by the cubic equation

ε3 − ε2∆− ε(2t22 + t21) + ∆t21 − 2t1t
2
2 cos 3k = 0. (2)

At t1 = t2, ∆ = 0 the solution is ε = 2t cos k. The band
is 1/6-filled with kF = π/6. At t2 6= t1 and ∆ 6= 0, spec-
tral gaps appear at k = ±π/3,±2π/3 corresponding to
the perturbations with wave vectors q = ±2π/3,±4π/3.
Since they do not coincide with 2kF , the weakly interact-
ing electron system would remain gapless [13]. However,
for the Mott insulator this is no longer the case. Besides
the charge (Mott) gap the anisotropy generates spectral
gaps in all other sectors. This is obviously related to the
fact that the perturbations around the SU(6) symmetric
point generate relevant operators with the wave vector
4kF .

Integrating over the high energy states we obtain the
following Hamiltonian:
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H =
2t22

U −∆

∑
k

P o,sk,k+1 + ∆
∑
k

[Xaa(3k + 2) +Xbb(3k) +Xcc(3k + 1)]Î +
∑
k

δVk, (3)

δVk = 2
( t21
U
− t22
U −∆

)
× (4)[

P̂ s3k,3k+1Xaa(3k)Xaa(3k + 1) + P̂ s3k+1,3k+2Xbb(3k + 1)Xbb(3k + 2) + P̂ s3k+2,3k+3Xcc(3k + 2)Xcc(3k + 3)
]

+

2t2

( t1
U
− t2
U −∆

){[
P̂ s3k,3k+1Xab(3k)Xba(3k + 1) +

P̂ s3k+1,3k+2Xab(3k + 1)Xba(3k + 2) + P̂ s3k+2,3k+3Xac(3k + 2)Xca(3k + 3)
]

+H.c.
}

+
2t2(t1 − t2)

U −∆
×{[

P̂ s3k,3k+1Xac(3k)Xca(3k + 1) + P̂ s3k+1,3k+2Xbc(3k + 1)Xcb(3k + 2) + P̂ s3k+2,3k+3Xbc(3k + 2)Xcb(3k + 3)
]

+H.c.
}
,

FIG. 3. a.) A graphic description of a dimerized state for
an isolated NaMSi2O6-chain. Only t2g orbital of M ions are
depicted. b.) The original tunneling scheme. c.) The tun-
neling scheme with relabeled orbitals. We relabel the orbitals
on different sites to make the tunneling diagonal. The solid
lines correspond to matrix element t1, the dashed lines cor-
responds to matrix element t2. d.) The dimerization pattern
in the presence of crystal field. The orbitals on which spin
singlets form are shown by thick lines.

where P sk,k+1 is the spin permutation operator and Xab

are Hubbard operators acting on orbital indices, defined
as (Xpq)

αβ = δαp δ
β
q . In [11] where the derivation is given,

this Hamiltonian is written in terms of the isospin oper-
ators T a. Since the Hund’s coupling is just affects the
anisotropy of the exchange integrals, we set it to zero to
simplify the calculations restricting the consideration to
various values of t2/t1 and ∆.

To get the overall picture of the correlations we used
the DMRG method [16, 17] to calculate the imaginary
part of the correlation function

S(ω, q) =
∑
k

∫ ∞
0

dt〈Szk(t)Szm(0)〉eiωt+iq(k−m), (5)

where Szk is the spin projection operator acting on site k.
The spectral weight contains rich information about the
excitation spectrum of the model. We carry out calcula-
tions with a Suzuki-Trotter decomposition of the evolu-
tion operator [18, 19] and a time-step δt = 0.1 in units
of 1/J . We have been able to study chains with up to 48
unit cells (L = 144 sites) using up to 1600 DMRG states
for the time evolution, and 5000 for ground state calcu-
lations, that translates into a truncation error of 10−5

and 10−8 respectively for the gapless case (similar accu-
racy is obtained in the gapped case with a smaller basis
size). Most time-dependent simulations were conducted
on chains with 24 unit cells (L = 72 sites). The local
space of configurations has dimension 6, but we use U(1)
symmetry corresponding to Sz and density conservation
for each orbital channel (4 quantum numbers in total).
The density for each orbital sector is fixed at n = 1/3,
while the spin is set to Sz = 0. This is equivalent to
density n = 1/6 in the SU(6) chain[14]. We calculate
the spectral function in real time and space with open
boundary conditions, and Fourier transform it to obtain
resolution in momentum and frequency following the pre-
scription outlined in 18–20.

Limit of small ∆/J , t2/t1 = 1.— Having a broader aim
than a particular case of NaTiSi2O6, we deem it instruc-
tive to start with the SU(6)-invariant model. The limit
∆ = 0, t2 = t1 allows an analytical treatment. The ther-
modynamics and the excitation spectrum are extracted
from Bethe ansatz. At low energies the spectral function
can be analyzed by means of Conformal Field Theory.
At higher energies one can also use the 1/N -expansion.

The spectrum of the SU(6) symmetric model is gapless
and the spectral weight is centered at q = ±π/3 which
corresponds to ±2kF . The spectral function also looks
squeezed into the region

4J sin(q/2) sin |kF − q/2| < ω < 4J sin(q/2) (6)
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FIG. 4. Numerical results for the lowest spectral gaps for
various values of the crystal field ∆ and t2 = t1.

corresponding to two-spinon emission. This agrees well
with 1/N picture where the spin operators are repre-
sented as bilinears of weakly interacting fermions. In the
presence of anisotropy spectral gaps open at q = ±2kF =
±π/3 shown on Fig. 2 meaning that the anisotropy
generates a relevant operator which carries momentum
4kF . Such operator exists at the SU(6) Quantum Criti-
cal Point, it transforms according to the representation of
the SU(6) group with the Young tableau consisting of a
vertical column with two boxes. The scaling dimension is
d = 2(1−1/N) = 5/3. The presence of such perturbation
also leads to spontaneous dimerization (see Figs. 3(a)(d)
and Fig. 5). This order breaks a discrete (translational)
symmetry, all other fluctuations are gapped and short
range. Obviously, small perturbations preserve the SU(6)
structure of the particle multiplets such that spin and or-
bital excitations are degenerate. The spectral gaps grow
slowly with ∆/J as shown on Fig. (4) due the high value
of the scaling dimension of the perturbing operator. The
SU(6) symmetry is preserved at low energies: Fig. (4)
shows that at ∆/J < 0.4 a difference between the gaps
for excitations with different quantum numbers is practi-
cally undetectable. At larger anisotropies the multiplets
will be split.

Limit of large ∆/J .—The easiest way to understand
the dimerization phenomenon is to consider the limit of
large crystal field. For J = 0 each site has two degener-
ate orbitals in the ground state. For sites 3n it may be
(a,b), for 3n+ 1 - (a,c), for 3n+ 2 - (b,c), etc.. At J 6= 0
the degeneracy is lifted and the ground state becomes
dimerized. One possible sequence of occupied orbitals is
(a, a, b, b, c, c, ...) which corresponds to nonvanishing ex-
change between sites (3n,3n+1), (3n+2,3n+3), etc.(see
Fig 3(d)). The other sequence is (b, c, c, a, a, ..) with non-
vanishing exchange between (3n+1,3n+2), (3n+3,3n+4),
etc. So, in the limit of infinite ∆ the ground state con-
sists of isolated periodically arranged spin dimers. Our
numerical calculations demonstrate that the dimerization
persists down to smallest values of ∆/J (see Fig.5). It
leads to two major effects for the spectrum opening gaps
for all excitations and leading to a progressive shift of the
spectral weight towards frequency ω = 2J corresponding
to the breaking of an isolated dimer [see Figs. 2(c)(d)].
Nevertheless, there is some weight at about J/2 ∼ 13

FIG. 5. Dimerization for various values of the crystal
field ∆ and t2 = t1. (a) Nearest neighbor spin-spin corre-
lation; (b) density-density correlation in the orbital channel;
(c) schematic illustration of the spin-orbital order in the limit
of large ∆: dashed lines represent orbitals that are projected
out. Charge fluctuations are suppressed and charge is frozen
in the depicted pattern. Spin is only allowed to interact in
pairs forming independent singlets.

meV, given 2J ' 53 meV [6], in agreement with the gap
seen in the heat capacity data [5].

According to the first-principles calculations and Wan-
nier function analysis [11, 26], NaTiSi2O6 has the follow-
ing parameters: U = 3.8 eV, JH = 0.8 eV, t1 = 0.203
eV, t2/t1 = 0.21, t21/U ≈ 0.01 eV. Hence in NaTiSi2O6

the deviation from t2/t1 = 1 is quite significant. How-
ever, due to the well-known double counting issue on the
LDA+U approach to correlated materials, the value of
∆ is uncertain and is taken as a free parameter. As
we have seen at such values of anisotropy and crystal
field the excitations are gapped and practically disper-
sionless (Figs.2(d,f,g)) corresponding to the local dimers
discussed above. This is the situation in NaTiSi2O6

which thus fails our expectations for an orbital spin liq-
uid. However, as follows from Figs. 2(b,c), at moderate
values of the anisotropy and crystal field there is a signifi-
cant spectral weight at small energies. The spectral func-
tion bears some resemblance to the SU(6)-symmetric one
which a is sign that the orbital degrees of freedom are not
quenched. Such situation may exist in the ruthenium- or
osmium-based pyroxenes where Ru3+ or Os3+ ions con-
tain one t2g hole. These are candidates for liquids with
tightly bound spin and orbital excitations. In the early
3d transition-metal oxides such as the titanium oxide, the
3d energy is considerably different from the oxygen p or-
bitals, which creates the barrier that hinders the indirect
hopping t2. However, t2 may become dominant as in, for
example, Na2IrO3 and RuCl3 to induce the Kitaev-type
spin frustration [10]. Specifically, considering Ru3+ has
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almost the same Shannon ionic radii as Ti3+, we did sim-
ilar first-principles calculations for NaRuSi2O6 [11]. We
found that t2/t1 = 0.64 (t1 = 0.132 eV), which is much
more favorable than the NaTiSi2O6 case. In addition,
the yz orbital moves higher in energy, which is closer to
and mixed with the hole bands of the xy and zx charac-
ters. Moreover, the experimentally observed large bond
dimerization is favored in the first-principles calculation

for NaTiSi2O6, but not for NaRuSi2O6. Thus, it would
be interesting to synthesize NaRuSi2O6 and compare its
low-energy physical properties with the present theory.
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