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Exceptional points (EPs) are singularities of energy levels in generalized eigenvalue systems. In this Letter,
we demonstrate the surface of EPs on a magnon polariton platform composed of coupled magnons and mi-
crowave photons. Our experiments show that EPs form a three-dimensional exceptional surface (ES) when the
system is tuned in a four-dimensional synthetic space. We demonstrate that there exists an exceptional saddle
point (ESP) in the ES which originates from the unique couplings between magnons and microwave photons.
Such an ESP exhibits unique anisotropic behaviors in both the real and imaginary parts of the eigenfrequencies.
To the best of our knowledge, this is the first experimental observation of ES, opening up new opportunities for
high-dimensional control of non-Hermitian systems.

Exceptional point (EP) is the singularity of generalized
eigenvalue systems[1–3]. It has drawn intensive interests
recently in non-Hermitian systems where dissipations are
nonzero and play a critical role in the systems behavior[4].
At the EP, both eigenstates and eigenvalues of the system
coalesce, distinguishing it from diabolic points where only
eigenvalues coalesce. EPs have been studied in a wide
range of systems, including coupled resonators or waveg-
uides in optical[5–8], microwave[9–12], magnetic[13], or
mechanical domains[14, 15]. Novel properties have been
discovered around or at the EP, ranging from topological
mode transfer[14] and asymmetric mode conversion[6, 12,
16] to extraordinary sensitivities[7, 8, 17–19] and directional
lasing[20].

Nonetheless, the demonstrations of EPs have been limited
to isolated points[6–15] or lines of EPs[21–24]. Along with
recent focuses on realizing non-Hermitian analogy of impor-
tant Hermitian concepts, such as the non-Hermitian Fermi
arc[25], exceptional rings spawn from Dirac points[21] and
Weyl points[26], it is crucial to extend these concepts to
higher dimensions. It has been theoretically proposed recently
that surfaces of EPs can be obtained in high dimensional pho-
tonic or mechanical systems[27–30], which can enable in-
triguing physical phenomena. However, realization of such
exceptional surfaces (ESs) requires more degrees of freedom
and great tunability, which pose a significant challenge for the
experimental demonstration.

On the other hand, magnonic polaritons[31–36] has
been emerging as a promising platform for non-Hermitian
physics[37]. Strong coupling between magnons (quantization
of collective spin excitations) and microwave photons have
been demonstrated. Different from most recently demon-
strated non-Hermitian systems, magnon polaritons couple two
resonances of different physical natures: spins and electro-
magnetic waves. In such systems, the magnon frequency can
be tuned by an external magnetic field, while the coupling
strength is determined by the geometry. With such promi-
nent flexibility, magnon polaritons provide an ideal solution
for experimental realization of ES.

In this Letter, we show using a magnon polariton sys-
tem with multiple tuning parameters, EPs can form a three-

dimensional (3D) ES within a four-dimensional (4D) syn-
thetic space. Synthetic dimensions have recently been in-
troduced to generate novel topological states that are oth-
erwise difficult to realize[38–40]. Our ES can be conve-
niently tuned in multiple dimensions simultaneously to coa-
lesce into an exceptional saddle point (ESP). Our measure-
ments show that this ESP is anisotropic, with the real and
imaginary parts of the eigenfrequencies behaving differently
along three synthetic dimensions. This is distinctly differ-
ent from recent demonstrations in low-dimensional parameter
spaces[41], where an EP pair coalesces in a single dimension
and forms an EP with anisotropic behavior only in the imagi-
nary part of the eigenfrequencies. The remarkable observation
from our work can trigger the study of synthetic dimension
EPs in different systems and their applications in topological
state transfer and sensing.

Our system consists of a microwave cavity and a magnonic
cavity [Fig. 1(a)]. The microwave cavity is a piece of high-
dielectric constant PCB[42] sealed with metal walls[43]. With
a size of 12×1.2×5 mm3, the cavity has its TE101 resonance
at 9 GHz. Such a volume is drastically reduced compared with
conventional air-filled 3D microwave cavities because of the
high dielectric constant of the PCB. The magnonic cavity is a
400-µm-diameter yttrium iron garnet (YIG) sphere glued on
a ceramic rod. It is placed inside a 1-mm-wide slot on the
cavity and can be moved along both x and y directions. The
slot length varies in different measurements, causing slight
changes in the cavity frequency and magnon-photon coupling
strength. A bias magnetic field is applied in the x-y plane
with a tunable angle (θ ) from the y direction (θ = 0 if not
explicitly specified). The magnon mode, i.e., the ferromag-
netic resonance of the YIG sphere, is tuned by the magnetic
field: fm = γH where γ = 2.8 MHz/Oe is the gyromagnetic
ratio. When the magnon is tuned to near resonance with the
cavity mode, they couple with each other through magnetic
dipole-dipole interactions.

The magnon-photon coupling is characterized by measur-
ing the cavity reflection at different H [Fig. 1(b)]. Intrinsic
system parameters are extracted via numerical fitting: cav-
ity frequency fc = 8.977 GHz, cavity dissipation κc = 54
MHz, magnon dissipation κm = 1.1 MHz, coupling strength
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FIG. 1. (a) Picture of the microwave cavity and the simulated cav-
ity magnetic fields for TE101 mode (fields inside the slot not shown).
A slot is cut near the field maximum to host the YIG sphere. The
bias magnetic field is applied in the x− y plane with an angle θ to
the y direction. (b) Normalized cavity reflection spectra at different
bias fields, showing the anti-crossing. The background signals are
removed during normalization for clarity. A small anti-crossing in-
duced by a high order magnon mode is visible at around 3500 Oe.
Slot length: 1 mm. (c)&(d) Riemann surfaces for the real (resonance
frequency) and imaginary (resonance linewidth) part of the eigenfre-
quency, respectively, reconstructed from measured reflection spectra
and averaged over multiple measurements. EP is indicated by the
circle, showing the bifurcation of the Riemann surface.

g = 128 MHz. Clearly the magnon-photon coupling dom-
inates over the dissipations of the magnon and cavity pho-
ton modes (g > κc,κm), indicating strong coupling. Despite
of the large cavity dissipation[43], strong coupling is still
achieved because of the significantly reduced cavity volume,
which improves the spatial overlap of between the photon and
magnon modes. The avoided-crossing in the spectra also con-
firms the strong coupling condition. A large cooperativity of
C = g2

κc×κm
= 276 is obtained.

In general, our magnon polariton system can be described
by a non-Hermitian Hamiltonian:

H =

(
fc 0
0 fm

)
+

(
−iκc g

g −iκm

)
. (1)

Solving the Hamiltonian gives two eigenmodes at eigenfre-
quencies:

λ± = f±+ iκ± = f0 + iκ0±
1
2

√
(∆ f − i∆κ)2 +4g2, (2)

where f0 = ( fc + fm)/2, κ0 = (κc + κm)/2, ∆ f = fm − fc,
∆κ = κm − κc. The parameters needed for calculating the
eigenfrequencies can be extracted from numerical fitting of
the cavity reflection spectra[43].

Equation (2) indicates our system has two eigenmodes. The
Riemann surfaces in Figs. 1 (c)&(d) show the real (resonance
frequency) and imaginary (linewidth) part of the eigenfre-
quencies, respectively, as a function of H and y. These Rie-
mann surfaces are calculated using experiment results and av-
eraged over multiple measurements to eliminate noises and
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FIG. 2. (a) Coupling strength as a function of x and y. The black
dot indicates the saddle point. Slot length: 5 mm. (b) Simulated
microwave magnetic field distribution for the cavity mode around the
slot. Dashed black line indicates the slot area. (c) Coupling strength
as a function of θ at x= 0 mm and y= 0.05 mm, where θ is the angle
of the bias magnetic field relative to the y direction. Circles and the
solid line are the measurement and cosine fitting results, respectively.

fitting uncertainties[43]. For each (H, y) combination, there
are two eigenfrequencies. For large y values, the sphere is far
away from the slot and the spatial overlap between magnon
and photon modes is small, leading to small g. Therefore, the
eigenfrequencies represent the intrinsic magnon and photon
modes, with the real part crossing each other at the diabolic
points while the imaginary part separating from each other.
When y becomes smaller, the sphere is closer to the slot cen-
ter. The increased mode overlap leads to strong coupling, with
avoided-crossing in the real part of the eigenfrequencies and
mixing of the imaginary part. However, at the onset of the
strong coupling (H = 3348 Oe, y = 0.7 mm), the two eigen-
frequencies coalesce into one, corresponding to the singular-
ity condition in Eq. (2): ∆ f = 0 and g = gc = ∆κ/2. Such a
singularity on Riemann surfaces is referred to as an EP. It is
different from the diabolic points which have the same eigen-
frequecy but different eigenfunctions. Instead, at the EP the
two eigenfunctions also coalesce into one. Note here only
half of the Riemann surface is plotted for clarity. Since mov-
ing YIG sphere along either direction of y axis is equivalent,
the Riemann surface is symmetric along y axis, and therefore
another EP exists at y =−0.7 mm.

The multi-degrees of freedom in our system allows manip-
ulation of EPs in a high-dimensional synthetic space. In addi-
tion to the y position of the YIG sphere and the bias field H,
the EP condition is also determined by the x position of the
YIG sphere. Figure 2(a) plots the measured magnon-photon
coupling strength as a function of x and y. The decrease in
the coupling strength compared with Fig. 1 is attributed to
the extended slot length (5 mm) which gives larger tuning
range for g but less confined cavity fields. The saddle-shaped
distribution of g is determined by the spatial distribution of
the cavity TE101 mode inside the slot(Fig. 2b). On the other
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FIG. 3. (a)-(c) Experimentally obtained Riemann surfaces for the real (top) and imaginary (bottom) part of the eigenfrequencies at different x
positions of the YIG sphere: x = 0.66 mm (g > gc), x = 0.13 mm (g = gc), x = 0.00 mm (g < gc). EP coalescence is observed at x = 0.13 mm
when g = gc. (d) Coupling strength g as a function of y positions at various x locations. (e) & (f) Cross-sectional views at the EP for the lower
figure of (b). Dashed lines are plotted to guide the eye.

hand, the coupling strength is also affected by the overlapping
factor[31]: g ∝ hcosθ , where h is microwave magnetic field
of the cavity mode. Note that the tilted bias magnetic field
does not affect the magnon frequency because its amplitude
does not change. Figure 2(c) depicts the experimentally ob-
served coupling strength as a function of θ , showing a clear
cosine dependence. Therefore, EPs in our system can be tuned
in four synthetic dimensions.

These extra dimensions introduce convenient control.
Specifically, an EP pair can coalesce into an anisotropic
EP[41]. Figures 3(a)–(c) plot the experimentally obtained
Riemann surfaces at different x positions. The slight asymme-
try along y is attributed to the perturbation to the cavity cause
by the supporting rod of the YIG sphere. The x position of
the sphere controls the relative position of the two EPs. When
x = 0.66 mm, the two EPs are widely separated. As x reduces,
they move closer and coalesce at x = 0.13 mm. When x keeps
decreasing, no EP can be observed (at x = 0, e.g.), and the real
part of the two eigenfrequencies always cross each other at
diabolic points while the imaginary parts are separated. This
can be explained by comparing g for different x positions at a
bias magnetic field enabling zero detuning ∆ f = 0 (Fig. 3d).
When x is large, the maximum of the g− x curve is above
the g = gc line and the two curves cross twice, correspond-
ing to two EPs. Decreasing x also leads to reduced couping
strength, moving the whole g− x curve below the g = gc line
and therefore they have no intersections, which consequently
eliminates any EPs. At x = 0.13 mm, the maximum of the
g− x curve is equal to gc so the two curves is tangent to each
other with a single intersection at y = 0 mm, corresponding to
a single EP.

When an EP pair coalesces, no signature of mode coupling
can be observed in the Riemann surface for the real part of the
eigenfrequency. However, in the imaginary part the singular-

ity condition associated with this EP can be easily observed:
the top and bottom surfaces are separated from each other but
in contact at a single point. Closer examination at this point
shows that this coalesced EP behaves differently along the two
parameter axises [Figs. 3(e)&(f)]. A linear dependence of the
linewidth on the y position is obtained near the EP, while for
the bias magnetic field it has a square-root dependence. This
can be explained by the fact that g has a parabolic dependence
on y, while ∆ f is linearly proportional to H.[43]

However, the EP coalescence only occurs for y. When fix-
ing y = 0 and sweeping x, another coalesced EP appears at
x = −0.13 mm considering the symmetric distribution of g
along the x direction [Fig. 2(a)], and these two coalesced EPs
form a pair. But within the 4D synthetic space, we can con-
veniently manipulate the EP pairs to further coalesce them for
x positions by taking advantage of the fourth dimension—the
magnetic field angle θ .

Figure 4(a) plots the distribution of EPs in the 4D synthetic
space (y, x, θ , H). The fourth dimension H is hidden by fix-
ing H at 3237 Oe because EPs always occur at zero detuning
(∆ f = 0). The EPs calculated from experimental data are rep-
resented by the white dots, while theoretical calculations from
extrapolated data are shown in solid lines, and a good agree-
ment is observed. These EPs form an ES which exhibits a
saddle-shaped distribution and is in agreement with the rela-
tion between the coupling strength and the x and y positions.

EPs always form pairs along either x or y axis on such an
ES. However, by varying θ , a unique condition can be found
when the EP pair coalesces along both axises. Changing θ ef-
fectively changes the overall amplitude of the saddle surface
of g. When θ is small (large), g is large (small). Therefore, the
saddle surface in Fig. 2(a) intersects the g = gc plane below
(above) the saddle point, and the intersection is a hyperbola
with a gap along y (x). At these intersections, g = gc is satis-
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FIG. 4. (a) Slices of ES in the 3D parameter space (x,y,θ ). The fourth dimension H is hidden (fixed at H = 3327 Oe). White dots: results
extracted from experimental data; black lines: calculation from numerical fittings. Planes at given θs are guides to the eye. The yellow star
represents the exceptional saddle point. (b)–(d) Cross-sections of the Riemann surfaces at the ESP. Top figures: real part of the eigenfrequencies
(resonance frequencies). Bottom figures: imaginary part of the eigenfrequencies (linewidth). Circles: experimental results; solid lines:
numerical fittings; dashed lines: guides to the eye. Black dots represent EPs. The slight mismatch between experimental results and numerical
fittings stems from the imperfect zero-detuning condition ( fc− fm 6= 0) in the experiment.

fied. Therefore, the parameter combination at these intersec-
tions (x, y, θ , H) represents the EP condition in the synthetic
space, which is summarized in Fig. 4(a). At a critical angle
θc, the saddle surface intersects the g = gc plane at the saddle
point (x = xc and y = yc). In this case, the intersection is a
single point instead of a hyperbola, indicating the coalescence
of EP pairs into one singularity simultaneously in both x and
y axis (yellow star in Fig. 4a).

The EP coalescence in the 4D synthetic space leads to
a nontrivial phenomenon: high-dimensional anisotropic EP.
Figures 4(b)–(d) plot the eigenfrequencies around this ESP.
Similar to Fig. 3, the EP coalescence results in anisotropic be-
havior along y and H axis in the imaginary part of the eigen-
frequency. The linewidth shows a linear dependence on y and
a square-root dependence on H. While for x, the anisotropic
behavior occurs in the real part of the eigenfrequency. A lin-
ear dependence on x is observed for the resonance frequency,
which shows a square-root dependence on H. Therefore,
the ESP is anisotropic along three different synthetic dimen-
sions for both real and imaginary part of the eigenfrequen-
cies. The linear crossings in both real and imaginary parts of
the eigenfrequencies at a single EP are unique to our ESP be-
cause of the coupling strength distribution shown in Fig. 2(a).
Such carefully designed coupling conditions offer the degrees
of freedom to realize other interesting phenomena such as
anisotropic high-order EPs in the future. From the application
point of view, the resonance frequency and linewidth can be
used independently to sense different physical variables with
various sensitivities and dynamic ranges.

To summarize, we have experimentally demonstrated the
ES in a high-dimensional synthetic space using magnonic
polaritons. Such an ES can coalesce to an ESP, leading to
the emergence of 3D anisotropic behaviors. Our demon-

stration shows the great potential of magnon polaritons for
high-dimensional non-Hermitian physics and opens up new
opportunities. For instance, encircling an EP in the high-
dimensional synthetic space can enable new functionalities
for topological state transfer or unidirectional propagation.
Our work also points out a novel direction for creating high-
dimensional EPs. In addition to 3D exceptional surfaces,
4D exceptional volumes or even higher-order EP assembles
can be achieved by introducing higher-order synthetic dimen-
sions, which can bring unprecedentedly enriched phenomena
in the study of non-Hermitian physics. These demonstrations
can also be extended to magnon-based quantum information
processing, where the high-synthetic-dimensional control can
enable robust quantum state transduction. Therefore, our re-
sults lay the groundwork for magnonic non-Hermitian physics
and point out a new avenue for magnon-based signal process-
ing.
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