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The propagation of electrons in an orbital multiplet dispersing on a lattice can support anomalous transport
phenomena deriving from an orbitally-induced Berry curvature. In striking contrast to the related situation in
graphene, we find that anomalous transport for an L = 1 multiplet on the primitive 2D triangular lattice is
activated by easily implemented on-site and optically-tunable potentials. We demonstrate this for dynamics
in a Bloch band where point degeneracies carrying opposite winding numbers are generically offset in energy,
allowing both an anomalous charge Hall conductance with sign selected by off-resonance coupling to circularly-
polarized light and a related anomalous orbital Hall conductance activated by layer buckling.

Berry curvature in a band structure can manifest in re-
sponses to applied fields by inducing an anomalous veloc-
ity in the equations of motion for a wavepacket [1–6]. A
prototype of this effect can be found on the well-studied
honeycomb lattice [7, 8]. However, physical realizations of
this model present an essential complication in practice. At
half filling, the band structure has point degeneracies pro-
tected by PT symmetry that carry opposite winding num-
bers. Breaking these symmetries to gap this spectrum lib-
erates a Berry curvature into the Brillouin zone but its inte-
grated strength vanishes unless the mass parameter also has
a valley asymmetry that compensates the sign change of the
winding number. This k-dependence inevitably requires site-
nonlocality in the mass terms [7, 8] that is difficult to experi-
mentally implement [9, 10]. A notable work-around occurs in
two-dimensional (2D) transition metal dichalcogenides where
inversion symmetry is broken, and the spectrum is instead
gapped by a valley-symmetric mass [11]. In this case, anoma-
lous charge transport can be activated by a valley asymmetry
in the nonequilibrium population of optically-excited carriers
[11–14].

In this work, we consider a different approach to engineer
Berry curvatures that induce both charge and angular momen-
tum anomalous Hall responses using purely local potentials
in simple Bravais lattices with minimal symmetries, and pro-
pose possible experimental signatures using a representative
triangular lattice. Our model is sufficiently generic that con-
clusions derived from it are expected to hold in many simi-
lar systems. We are motivated by a recent work on a two-
dimensional Cu2Si that hosts symmetry-protected line degen-
eracies without support from any sublattice symmetry and
with negligible spin-orbit coupling [15], which we also as-
sume throughout our work. Band degeneracies in the model
arise from an on-site L = 1 orbital multiplet and are lifted by
dispersion on the lattice. Unlike the situation on the honey-
comb lattice, here the winding number around the point nodes
is valley-symmetric, and the net winding over the compos-
ite manifold is compensated by point degeneracies enforced
elsewhere in the band structure. In this situation, regions of
momentum space carrying compensating Berry curvatures are
spectrally separated. Thus, we can suppress the competing

contributions of the Berry curvature to the anomalous Hall
conductance (AHC) by a judicious choice of chemical po-
tential. We demonstrate this effect on the triangular lattice
by gapping out the time-reversal-symmetric point degenera-
cies via coherent coupling of the lattice to circularly-polarized
light. We find that the magnitude of the gap can be “reso-
nantly” enhanced by the frequency of the field. We estimate
that the mass gap of a typical material on the order of 100 meV
can be achieved by optical fields in the wavelength range of
0.1 − 1.15 µm with experimentally-accessible intensities of
103−105 W/µm2. A wide tunable gap means that the anoma-
lous Hall effect in such a system should be experimentally
detectable in a large range of chemical potentials.

Next, we utilize the orbital degree of freedom to propose
an anomalous orbital Hall effect that can be activated by layer
buckling [16, 17]. This is a transverse current to an applied
field where the orbitals are polarized in the out-of-plane di-
rection. To observe this effect, we need to break time-reversal
symmetry and mirror symmetry across the lattice plane to hy-
bridize the L = 1 multiplets with the L = 0 singlet. We
demonstrate this effect on the triangular lattice by calculating
the anomalous orbital Hall conductance (AOHC) in the pres-
ence of a mirror-breaking perturbation. Similar phenomena
should be ubiquitous in band structures which disperse an or-
bital multiplet, where there are degeneracies protected by mir-
ror symmetry that can be lifted via, for instance, layer buck-
ling. Examples of recently isolated 2D layers that host these
mirror-protected line nodes include Cu2Si, CuSe, and AgTe
[15, 18, 19]. With the recent surge in experimental interest
in mirror-protected fermions, we expect our generic model to
find applicability in a wide number of experimental platforms.

Our lattice model derives from the propagation of an L = 1
orbital multiplet on a triangular lattice, as illustrated in Fig.
1a. We consider a tight-binding model where each lattice site
consists of three p orbitals, and allow only nearest-neighbor
hoppings. The orbitals can be equivalently represented in the
axial basis as p+1, p0, and p−1, or in the Cartesian basis as px,
py, and pz. In either representation, the Bloch Hamiltonian at
crystal momentum k = (kx, ky) can be partitioned into

Ĥ(k) = h0(k) Î + hc(k) l̂z · l̂z + h(k) · L̂, (1)
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where, as defined in [20], h0(k) is a scalar coupling,
hc(k) is a crystal field, h(k) = (h1(k), h2(k)) is a
vector coupling to the orbital degree of freedom, L̂ =(

[l̂x · l̂x − l̂y · l̂y], [l̂x · l̂y + l̂y · l̂x]
)
. The scalar term de-

scribes the average dispersion of the orbital multiplet, and the
crystal field distinguishes states that are even and odd under
reflection through the lattice plane. Important quantum geom-
etry is contained in the last term of Eq. (1) that couples the
orbital polarization to an effective k-dependent ordering field.

It is straightforward to verify that the Hamiltonian respects
sixfold rotation symmetry of the lattice and also respects time-
reversal symmetry T . Furthermore, the in-plane subspace (px,
py, or p±) is decoupled from the out-of-plane subpace (pz or
p0). This is a consequence of mirror-reflection symmmetry
about the x-y mirror plane that maps (x, y, z) 7→ (x, y,−z).
As emphasized in Ref. [15], intersections between energy
surfaces in the z-mirror even and odd sectors are nodal lines
that are twofold degenerate in the absence of spin-orbit cou-
pling (Fig. 1b). Because of this decoupling, we can project
the Hamiltonian to just the mirror-even sector for analysis of
a two-band model. In the axial representation, the projected
Hamiltonian can be written in the chiral form

P̂−1Ĥaxi(k)P̂ = (h0(k) + hc(k)) Î + ĥe(k), (2)

where P̂ is the mirror-even projection operator,

ĥe(k) =

(
0 d(k)

d∗(k) 0

)
, (3)

and d(k) = h1(k) − ih2(k), where h1(k) and h2(k) are de-
fined in [20]. Here, the σz term is forbidden by the composite
T C2z symmetry. This feature distinguishes the primitive lat-
tice model from its honeycomb counterpart where the “bare”
C2z rotation is not a symmetry of the tight-binding Hamilto-
nian and instead is supplemented by the sublattice exchange
operation σx. Band degeneracies in the Hamiltonian (3) im-
pose simultaneous null conditions on the real and imaginary
parts of d(k), which can occur only at exceptional points in
two dimensions. Threefold rotational symmetry pins these
points to high-symmetry momenta Γ, K and K ′ where the
small groups admit two-dimensional irreducible representa-
tions (Fig. 1c). Near the K(K ′) points, the degeneracy
is lifted to linear order in momentum, while it is lifted to
quadratic order at the Γ point.

Although the linear nodes at K and K ′ are reminiscent of
the situation in graphene, here its geometric character is en-
tirely different. This is because, as mentioned above, C2z

without basis exchange is a symmetry of the triangular lattice.
This requires the phase winding of the Bloch bands around
the valley singularities to be the same. T -symmetry requires
the net winding number integrated over the full orbital man-
ifold to vanish, and this is accomplished by a compensation
from the quadratic node at Γ. Fig. 2 illustrates this point by
comparing the winding of arg(d(k)) for the honeycomb lat-
tice (left), where there is a branch cut that connects the K and

K ′ points, and for the L = 1 manifold on the triangular lat-
tice (right), where there are two branch cuts each linking a
zone corner to the second-order node at Γ.

The symmetry of the phase profile in Fig. 2 allows
anomalous transport to be activated while retaining a valley-
symmetric population in the presence of local and spatially
uniform mass terms. Perhaps the simplest possibility is to
augment the Hamiltonian of Eq. (3) with a k-independent
coupling ε σz that breaks the degeneracy of the m = ±1 ba-
sis states, as detailed in [20]. Physical realizations include a
ferromagnetic state with coupling between the magnetization
and the on-site orbital moments or (as described below) coher-
ently driving the orbital degrees of freedom with a circularly-
polarized optical field.

The effects on the band structure are shown in Fig. 1c
where the band degeneracies are lifted at O(ε) at the K(K ′)
and Γ points. Fig. 3a gives a density plot of the distribution of
Berry curvature in the occupied states when the chemical po-
tential is tuned to middle of the K-point gaps, showing “hot
regions” near the zone-corners. In weak coupling, ε < ∆,
where ∆ is the energy difference between K(K ′) and Γ, the
bands overlap and the integrated Berry curvature near the zone
corners is partially screened by the compensating curvature
that is peaked in the higher-energy states near the Γ point [21].
The AHC varies continuously with band filling and is given by

σαβ =
e2

~
∑
n

∫
BZ

d2k

(2π)2
Ωαβ,n(k)Θ(µ− εn(k)) (4)

where Θ(x) is the Heaviside step function, representing the
Fermi-Dirac occupation function at zero temperature, µ is the
chemical potential, the antisymmetric Berry curvature tensor
for the nth band with Bloch state |un(k)〉 and energy εn(k) is
given by

Ωαβ,n(k)

2~2
=
∑
m 6=n

Im
[
〈un(k)| vα |um(k)〉 〈um(k)| vβ |un(k)〉

(εn(k)− εm(k))2

]
,

(5)
and vα = ~−1∂kαH is the band velocity operator. Fig.
4b shows the AHC as µ is swept through the spectrum. It
switches from particle- to hole-like response as a function
of the band filling, reflecting the proximity to the nearest
sources/sinks of Berry flux; additionally, a plateau occurs
when µ lies within the K-point gaps, where the value of the
Hall conductance saturates at a value σxy < e2/h because of
partial screening from the curvature from the higher-energy
Berry sinks. In the extreme weak-coupling limit, ε� ∆, this
compensation is negligible and σxy sharply peaks at ∼ e2/h
in a narrow range of µ. With the chemical potential in the
K-point gap, the AHC can also be understood in an edge-
state picture (Fig. 4a) where quantized transport through edge
channels is partially screened by backflow through bulk states
that carry a residual curvature.

Anomalous Hall response can be activated by coherently
driving the system with a perpendicular circularly-polarized
optical field at normal incidence which breaks T -symmetry
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Figure 1: (a) Model for the propagation of an L = 1 orbital multiplet on a triangular lattice. Here, T̂ is the hopping operator, Ec denotes
a circularly-polarized optical field, and J and Jo are the charge and orbital responses to an applied transverse E field. (b) Energy surfaces
for bands that are even (odd) under z-reflection shown in yellow (green). Surfaces with opposite mirror eigenvalues intersect on line nodes
(projected red and purple lines). Twofold degenerate point nodes are shown as black/blue points with a quadratic contact at the zone center
(black) and linear band contacts the zone corners (blue). (c) The dispersion of the composite bands along symmetry directions in a model with
T -symmetry (dashed) and with a T -breaking potential (solid). Blue points denote intersection of the nodal lines with the plane of the figure,
and red points are twofold degeneracies pinned to high-symmetry points. Simulation parameters are given in [20]. All energies are scaled
relative to W, the bandwidth at Γ.

Figure 2: Density plots of arg[d(k)] for tight-binding Hamiltonians
of a scalar field on the honeycomb lattice (a) and for the mirror-even
states on theL = 1 triangular lattice (b). In (a), a branch cut connects
point singularities at time-reversed points K and K′. In (b), time-
reversed zone-corner singularities carry the same winding number,
and connect to a compensating second-order node at Γ.

Figure 3: Density plots of the occupation-weighted Berry curvature
defined by the summand in Eq. (4) (a) and the occupation-weighted
orbital Berry curvature defined by the summand in Eq. (8) (b) when
band degeneracies are lifted by uniform local T -breaking fields. In
(a), T -symmetry is broken by coherent coupling to an optical field.
In (b), z-mirror-even and odd sectors hybridize, replacing nodal lines
by a quartet of linear point degeneracies. Simulation parameters are
given in [20]. The color scales are given in units of a2, where a is
the lattice constant.

and lifts band degeneracies at the Γ and K(K ′) points. Since
this field carries integer angular momentum, in lowest order, it
hybridizes the mirror-even and mirror-odd bands; integrating
out the latter induces an effective orbital Zeeman field ε(k)σz
seen in the mirror-even subspace. To estimate its size, we
couple the optical field to the on-site moments and calculate
the mass term, as derived in [20], to be

ε(k) =
e2E2

0p
2~ω

2(hc(k)2 − ~2ω2)
, (6)

which is second order in the driving fieldE0, linear in the driv-
ing frequency ω, and controlled by the strength of the interor-
bital matrix element p . This mass can be resonantly-tuned by
adjusting the driving frequency through the crystal field scale.
To estimate the size of this effect, we take representative pa-
rameters for a typical material, hc ≈ 1 eV and p = 1 Å,
achieving a mass scale ∼ 100 meV in the wavelength range
0.1− 1.15 µm (resonance is at 1.24 µm) requires peak inten-
sities in the range 103 − 105 W/µm2, which is accessible to
currently available sources.

The orbital degree of freedom also allows the possibility
of an angular momentum current where an anomalous flow of
orbital angular momentum, with or without charge, is directed
perpendicular to an applied in-plane electric field [16, 17]. A
natural choice for the angular momentum current operator is
j
(α)
β = ~

2{lα, vβ}. However, because the angular momen-
tum operators lα do not commute with the Hamiltonian, such
a current operator does not satisfy a continuity equation. In-
stead, in the regime where one is probing low-frequency dy-
namics with a period much larger than the interband dephas-
ing time, we can use a band-projected version where lα is re-
placed by

∑
n Pk,nlαPk,n, and Pk,n = |un(k)〉 〈un(k)| is

the projection operator. This operator projects the angular mo-
mentum operators onto the diagonal elements of the density
matrix, and clearly commutes with the Hamiltonian. In this
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Figure 4: (a) Band dispersion for a ribbon of the triangular lattice showing the projections of the bulk bands (grey) and confined edge modes
inside the bulk gaps (red and green). (Inset) The K point gaps host counterpropagating states on opposite edges of the ribbon. (b) The
anomalous Hall conductance in the presence of a T -breaking potential evolves from a particle-like to a hole-like response as a function of
band filling µ. Plateaus occur when the chemical potential is tuned within the induced gaps at the K and Γ points. (c) Breaking z-reflection
symmetry activates an orbital Hall conductance describing a transverse angular-momentum current driven by an in-plane electric field. The
orbital response is strong in two sharp spectral features where the orbital current is correlated/anticorrelated with the charge current. Simulation
parameters are given in [20].

low-frequency regime, we can write the angular momentum
current operator as [22]

j
(α)
β =

~
2

∑
n

{Pk,nlαPk,n, vβ} (7)

to describe a current flowing in the β-direction with angu-
lar momentum polarized along the α-direction. The anoma-
lous orbital transport coefficient derived from jαβ is purely
transverse, leading to J (z)

α = σ
(z)
αβEβ , where σ(z)

αβ contains an
angular-momentum-weighted curvature

σ
(z)
αβ = e

∑
n

∫
BZ

d2k

(2π)2
Ω

(z)
αβ,n(k)Θ(µ− εn(k)), (8)

where the angular-momentum-weighted curvature is [23]

Ω
(z)
αβ,n(k)

2~
=
∑
m 6=n

Im

[
〈un(k)| j(z)α |um(k)〉 〈um(k)| vβ |un(k)〉

(εn(k)− εm(k))2

]
.

(9)
We note that the orbital curvature defined in Eq. (9) is rem-
iniscent of the charge curvature in Eq. (5) with the charge
current operator replaced by the angular momentum current
operator. For the special case of a two-band model where
the band-projected angular momenta 〈lz〉 exactly cancel, the
AOHC in Eq. 8 vanishes. In our model, it is activated by
breaking z-mirror symmetry which hybridizes the in-plane
and the out-of-plane orbital polarizations, as detailed in [20].
This can be accomplished via layer buckling. Fig. 3b shows
the distribution of orbital Berry curvature produced by a po-
tential which retains y-mirror symmetry but breaks the hori-
zontal mirror symmetry by mixing x- and z-orbital polariza-
tions. This lifts the line-node degeneracy except for a quartet
of exceptional band contact points. The orbital curvature is
largest at momenta where in-plane and out-of-plane polariza-
tions are optimally mixed. Fig. 4c shows the charge and or-
bital Hall conductances calculated in this three-band model as

a function of µ. The broken symmetry activates the AOHC
seen in two sharply-defined spectral features where the in-
plane and out-of-plane degrees of freedom are most strongly
mixed. These modes describe anomalous transport of charge
and angular momentum that are correlated (anticorrelated) in
the lower (upper) bands. Interestingly, we find that in the
strong-coupling limit where the spectrum is fully gapped, the
AHC vanishes but the residual AOHC retains nonzero plateau
representing a pure flow of angular momentum with no con-
comitant flow of charge. Experimentally, the orbital Hall ef-
fect is established in a two-dimensional system by measuring
the out-of-plane angular momentum polarization of the trans-
verse current to an applied field.

Related phenomena can be expected in other situations
where propagation on a lattice disperses an orbital degree of
freedom [24]. Although our study is motivated by the band
topology in Cu2Si [15], this material is not optimal for this
application because the relevant Si-3p-derived bands overlap
with Cu-3d states, obscuring some of the most interesting sin-
gularities in the active band manifold. One expects that this
obstacle can be circumvented by a judicious choice of cations
in related materials. Recently, 2D lattices of CuSe and AgTe
have been successfully fabricated and characterized. The lat-
tice structure of these materials has a triangular sublattice and
has been shown to host fermion line nodes that are protected
by mirror symmetry in the absence of spin-orbit coupling
[18, 19]. Importantly, since the orbital connection does not
rely on spin-orbit coupling, our approach can immediately be
used to support topological transport in systems containing
only light elements. We note that previous theoretical work
along these lines considered a 2D variant of this model where
the in-plane orbital degrees of freedom are instead coupled on
the two-site basis of a honeycomb lattice, showing that it can
realize an orbital analog of the quantum anomalous Hall ef-
fect [25] and even realizations on optical lattices [26]. The
use of an on-site vector degree of freedom along with broken
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T symmetry lends itself naturally to topological mechanical
systems in a driven state designed to break reciprocity [27].
We also note that the model derived here for describing the
lattice propagation of an integer-quantized orbital multiplet is
(absent the crystal field splitting) a 2D variant of a 3D model
that possesses point nodes for J = 1 lattice fermions [28].
Spin-orbit coupling on the triangular lattice can also lead to
other topological phases such as the quantum spin Hall effect
[29].
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