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We discuss the decay rates of chaotic quantum systems coupled to noise. We model both the
Hamiltonian and the system-noise coupling by random N × N Hermitian matrices, and study the
spectral properties of the resulting Liouvillian superoperator. We consider various random-matrix
ensembles, and find that for all of them the asymptotic decay rate remains nonzero in the ther-
modynamic limit, i.e., the spectrum of the superoperator is gapped as N → ∞. For finite N , the
probability of finding a very small gap vanishes as P (∆) ∼ ∆cN , where c is insensitive to dissi-
pation strength. A sharp spectral transition takes place as the dissipation strength is increased:
for dissipation beyond a critical strength, the slowest-decaying eigenvalues of the Liouvillian corre-
spond to isolated “midgap” states. We give evidence that midgap states exist also for non-random
system-noise coupling and discuss some experimental implications of the above results.

How nonequilibrium systems relax to steady states
is a central topic in many-body dynamics. For a sys-
tem coupled to an external environment, the rate of
approach to the steady state depends nontrivially on
the system-environment coupling, i.e., the dissipation
strength. Weak dissipation enhances decay, but strong
dissipation can suppress it through the quantum Zeno ef-
fect [1–4]. These phenomena have been extensively stud-
ied, both theoretically and experimentally, for specific
models [5–15]. Here, in contrast, we discuss them within
the generic setting of random matrix theory (RMT) [16].
Historically, RMT was introduced to describe complex
dynamical systems for which a microscopic description
would be intractable [17, 18]. RMT is believed to de-
scribe the generic long-time behavior of chaotic quantum
systems [19–21]. It predicts universal features in the den-
sity of states and level statistics that have been verified
numerically and experimentally in many settings [22].
RMT has also been extended to open quantum systems,
mainly via scattering theory [23, 24], and has been used
to model evolution under effective non-Hermitian Hamil-
tonians [25]. Given this background, it is notable that
until very recently [26, 27] RMT was not applied to the
Lindblad master equation [28–30], which is the standard
framework for describing open quantum systems in fields
ranging from quantum optics to mesoscopics.

Much is known about the steady states of specific Lind-
blad equations, and some notions of universality have
been developed for these states and the phase transitions
between them [13, 31]. However, the issue of universality
in the dynamics of master equations, e.g., their approach
to a steady state, remains largely unexplored (see how-
ever Refs. [32–37]). Here, we use RMT to identify uni-
versal dynamical properties of a class of open quantum
systems: those coupled to classical white noise, or equiv-
alently to purely dephasing Markovian baths [38–40].

We study such dynamical properties by exploring the
spectrum of the Liouvillian “superoperator” L (defined

below), which generates the dissipative evolution of the
system’s density matrix ρ. The spectrum of L has a zero
mode (the steady state), which in the systems we con-
sider is unique and proportional to the identity (i.e., an
infinite-temperature state). The other eigenmodes of L
have strictly negative real parts, which correspond to de-
cay rates. Thus, the eigenvalue with smallest nonzero
real part sets the timescale on which the system asymp-
totically approaches its steady state. We find that in the
N →∞ limit this approach is always “fast” in the sense
that very small decay rates become infinitely improbable.
However, the distribution of the slow decay rates evolves
non-analytically with the dissipation strength. While for
weak dissipation the asymptotic decay rate resides at
the edge of a continuum of low-lying L-eigenstates, it,
and possibly the next few slowest rates, split from the
continuum and become isolated “midgap” states [41] be-
yond a critical dissipation strength, see Fig. 1. This
transition seems not to have been noticed in previous
work, although related phenomena have been observed in
the mathematical literature on classical dissipative sys-
tems [42, 43]. In the following we establish these results,
comment on the finite-N scaling of the gap probability
distribution, demonstrate that midgap states appear re-
gardless of details of the system-noise coupling and dis-
cuss some of their experimental implications.
Master equation.—We consider the Lindblad equation

∂tρ = Lρ ≡ −i[H, ρ]+γ

nd∑
k=1

[
LkρL

†
k −

1

2
{L†kLk, ρ}

]
, (1)

where H is its Hamiltonian, Lk are “jump operators”
representing the coupling of the system to its environ-
ment, and γ is the dissipation strength. We focus on
the case where the Hamiltonian is an N × N random
matrix from the Gaussian Orthogonal Ensemble (GOE),
whose elements have zero mean and variance 〈HijHkl〉 =
1

2N (δikδjl + δilδjk), and where there is a single jump
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FIG. 1. (a) Distribution of Liouvillian eigenvalues in the com-
plex plane near the origin, obtained from 60 realizations of
an N = 100 system with large dissipation, γ = 50. (b) Prob-
ability density of the real part of the eigenvalues. A well-
defined crossing point in the finite-size scaling analysis identi-
fies the edge of the continuous spectrum, which is largely due
to complex eigenvalues. The purely real eigenvalues domi-
nate the small |λ| regime. Clearly visible is an isolated state
at λ ' −0.032, and possibly another at λ ' −0.057. (c)
Spectral gap and the edge of the continuum as a function of
dissipation γ. The gap values obtained from the largest acces-
sible systems N = 160 and by extrapolation from smaller sizes
agree and scale as (γ/2)±1 for weak/strong dissipation. For
γ ≥ 6 the edge of the continuum deviates from the gap, and
the eigenvalues closest to zero become isolated. This transi-
tion is also evident from the inset, which shows that the gap
between the first two “excited” eigenstates of the Liouvillian
shrinks with N for γ < 6 and increases for γ > 6.

operator (nd = 1), statistically independent of H and
also drawn from the GOE. Other cases will be addressed
briefly at the end (and in [44, 45]). Note that we have
scaled the distribution such that the N → ∞ spectra
of H and L reside in [−

√
2,
√

2]. We concentrate on the
large-N limit, but also discuss some nonperturbative fea-
tures that arise at finite N .

General properties.—The right-hand side of Eq. (1) is
a linear “superoperator” acting on ρ, allowing us to set
up the eigenvalue problem Lρ = λρ. The Liouvillian L
is a completely positive trace preserving map, and for
γ ≥ 0 all eigenvalues λ satisfy Reλ ≤ 0, with at least one
eigenvalue at λ = 0. For the model considered here, the
steady state is unique and given by the infinite tempera-
ture thermal state proportional to the identity.

Furthermore, the evolution under the generator L does
not take states out of the space of density matrices, which

requires it to preserve both trace and Hermiticity. It then
follows that (Lρ)† = L(ρ†) and as an N2 × N2 matrix
its components obey the relation Ljilk = L∗ijkl. This
“conjugation” symmetry can be used to show that the
eigenvalues of L come in complex conjugate pairs [45],
which can collide at an “exceptional point” and become
purely real [46], or vice versa. A nontrivial property of
the model is that at least N eigenvalues are necessarily
purely real. This property follows from combining the
conjugation symmetry noted above with the additional
symmetry of the Liouvillian Lijkl = Lklij which follows
when H and L are real symmetric matrices [45].

Weak dissipation.—In the absence of dissipation the
dynamics is governed by the operator −i[H, ·]. The Li-
ouvillian eigenvalues correspond to differences, −i(Eα −
Eβ), between Hamiltonian eigenenergies. This spectrum
has N eigenstates of the form |α〉〈α| with eigenvalue
zero, and N(N − 1) states of the form |α〉〈β| with imagi-
nary nonzero eigenvalues that come in complex conjugate
pairs. In the language of nuclear magnetic resonance,
the former correspond to “populations” and the latter to
“coherences” [47]. Level repulsion in the spectrum of H
manifests itself as a suppression of the density of eigenval-
ues with small nonzero imaginary parts |Im(λ)| . 1/N .

When γ is small, we can treat it perturbatively. To
first order the populations and coherences decouple. In
the N -dimensional subspace of populations one obtains
a symmetric classical master equation, in which the off-
diagonal terms are γ|Lαβ |2 with Lαβ = 〈α|L|β〉, while
the diagonal terms are determined by the constraint that
each column should sum to zero. Every term in this
matrix is sign-definite, so one can disorder-average the
master equation to get a matrix element (i.e., a transi-
tion rate) 〈|Lαβ |2〉 ∼ 1/(2N) between any pair of popu-
lations. The resulting spectrum in the population sub-
space contains a unique steady state and N − 1 degen-
erate states with eigenvalue λ = −γ/2. Meanwhile, at
first order and up to 1/N corrections, each coherence
|α〉〈β| picks up a (real) perturbative shift of the form
−(γ/2)

∑
η(|Lαη|2 + |Lβη|2) = −γ/2. Therefore, N2 − 1

states rigidly move away from the steady state by an
amount −γ/2. Since there is a hard gap at first order in
γ, we expect it to be robust, provided that higher-order
perturbative corrections do not diverge in the large-N
limit. We have checked this to order γ2 [45].

Strong dissipation.—As γ → ∞ the spectrum of L
becomes λab = −(γ/2)(κa − κb)2, where κa are the L-
eigenvalues. Here too, there are N “diagonal” zero modes
of the form |a〉〈a|, which we call “L-populations”. We
dub the remaining eigenstates, of the form |a〉〈b|, “L-
coherences”. In this limit the spectrum is real and gap-
less, with bandwidth 4γ and level spacing ∼ γ/N2.

Next, we perturb in the Hamiltonian, taking N → ∞
at large but finite γ. At first order, an L-coherence
|a〉〈b| picks up a purely imaginary O(1/

√
N) shift τab =
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FIG. 2. The first (a) and second (b) “excited” eigenstates of
the Liouvillian, obtained from averaging over 60 realizations
of an N = 100 system with γ = 50. Shown are compo-
nents along the L-populations |κ〉〈κ|, parameterized by their
L-eigenvalue, κ. The components along the L-coherences are
down by 2-3 orders of magnitude and are negligible in (a).
Their spectral weight in (b) is accounted for by rescaling the
eigenstate. The expected N, γ →∞ behavior in terms of the
Chebyshev polynomials Un(κ/

√
2) is shown in red.

i(〈b|H|b〉 − 〈a|H|a〉), with the result

λab = −γ
2

(κa − κb)2 + iτab. (2)

The L-populations, however, remain exact zero modes to
first order. To resolve these degeneracies, one must go to
second order in the Hamiltonian where populations and
coherences mix. One can disentangle the subspaces via a
Schrieffer-Wolff transformation [48]. Each L-population
connects to 2(N − 1) coherences, obtained by changing
one (but not both) of its indices. Consequently, any two
populations, |a〉〈a| and |b〉〈b| are connected by the second
order matrix element

ϕab = −|Hab|2

λab
− |Hab|2

λ∗ab
=

4

γ

|Hab|2(κa − κb)2

(κa − κb)4 + (2/γ)2τ2ab
.

(3)
One may worry that since many [O(N3/4)] of the L-

coherences which are coupled to a population have eigen-
values that are smaller than a typical Hab, the coherences
are strongly coupled to the populations and there is no
way to separate them. However, note that the matrix
elements (3) vanish for pairs of L-populations with very
similar eigenvalues κa ≈ κb. Consequently, coherences
with small |λab| do not couple strongly to the popula-
tions and the required separation between the two sets
can be carried out to second order in H [45].

In the subspace of L-populations the spectrum consists
of two types of states. The lowest few eigenstates are
isolated and remain separate from the continuum even
after disorder averaging. Their form and their eigenval-
ues λn = −(2/γ)n, with integer 0 ≤ n ≤ nmax, can be
obtained analytically [45], see Fig. 2 for comparison with
numerical results. For more negative λ, the peaks corre-
sponding to individual eigenvalues become more closely
spaced, broader, and merge into a continuum upon dis-
order averaging [45]. Concomitantly, in the L-coherences

subspace, second-order perturbation theory shifts states
near λ = 0 by an amount −c/γ [45], with c a constant,
resulting in an overall gapped spectrum. Numerically,
we find c > 2 such that the λ1 state (with possibly ad-
ditional n > 1 levels) always appears to the right of the
continuum, leading to the large-γ behavior of the gap
∆ = 2/γ, in accord with the quantum Zeno effect.
Numerical results.—Fig. 1c presents numerical results

on the distribution of gaps at various values of γ and
N . Since the results obtained by finite-size extrapolation
agree well with those obtained for the largest manage-
able systems (N = 160) using the Arnoldi method, we
expect that the calculated gap values are close to the
thermodynamic limit. Both methods give a transition
from ∆ = γ/2 at weak dissipation to ∆ = 2/γ at large
dissipation with a maximum around γ ≈ 3.5.

We used finite-size scaling to locate the edge of the con-
tinuous spectrum of L. Within our numerical constraints
we were able to detect, in the range 0.1 ≤ γ ≤ 100, sharp-
ening of the density of states (DOS) edge with system
size, giving a well-defined crossing point (Fig. 1b). This
is consistent with the conjecture that the DOS jumps dis-
continuously at the edge of the spectrum. When γ . 6
the jump in the DOS occurs at the gap, but for larger γ
the jump is at a larger value of |λ| than the gap. In this
regime, it seems that there is at least one isolated state,
and possibly multiple states, at decay rates appreciably
lower than the edge of the continuous spectrum. These
can clearly be seen as isolated peaks in the DOS for the
larger system sizes in Fig. 1b.

To better locate this transition, we computed the γ-
dependence of the distance between the two smallest (in
absolute value) non-zero eigenvalues of L. A clear flow
reversal is seen in the inset of Fig. 1c, indicating a phase
transition at γc ≈ 6. For γ . 6 the two eigenvalues
approach each other with increasing system size, as ex-
pected for continuum states. For larger γ, however, they
move away from each other with increasing N , the DOS
jump steepens and the isolated eigenvalue becomes more
clearly separated from the continuum.
Finite-size corrections.—Our results indicate that as

N → ∞ the disorder-averaged density of states is zero
at sufficiently small |λ|. We now discuss how this hard
gap sets in, by considering finite-size systems. We argue
on general grounds that the density of states as λ → 0
is sensitive to the symmetry classes of H and Lk, as well
as to the size of the Hilbert space N and the number of
distinct jump operators Lk; however, its λ → 0 shape is
γ-independent. For the case of nd jump operators, the
probability of finding a gap ∆ scales as

P (∆) ∼ ∆βnd(N−1)/2−1 , (4)

where β = 1, 2, 4 for orthogonal, unitary, and symplectic
ensembles. This prediction is compared with numerics
for the orthogonal ensemble (Fig. 3), where results for
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FIG. 3. Eigenvalue density close to λ = 0 at γ = 2 for small
system sizes, N = 3, 5, 7, averaged over 500, 000 realizations;
the behavior is consistent with Eq. (4) (straight lines).

other ensembles are shown in [45]. The figures plot the
asymptotic density of eigenvalues, and show that it com-
pares favorably with the scaling behavior, Eq. (4). When
the Hamiltonian and jump operators belong to different
ensembles, the appropriate value of β is that correspond-
ing to the lower-symmetry (higher β) ensemble.

Eq. (4) can be understood via a golden-rule argu-
ment. For simplicity we first treat the case of a real
(β = 1) H and L with nd = 1. Consider a system
initialized in the eigenstate |n〉 of the Hamiltonian. In
the presence of a Markovian bath (which has an energy-
independent density of states) its decay rate is given by
Γn =

∑
m 6=n |〈n|L|m〉|2, where m runs over all other

eigenstates of H. There are N − 1 matrix elements in
this expression, and (given that H and L are mutually
uncorrelated and taken from the GOE) Lnm ≡ 〈n|L|m〉
can be regarded as independent real Gaussian random
numbers. For Γn to be small we need all matrix ele-
ments to be small. One can approximate the cumulative
probability distribution

P (Γn ≤ ∆) ∼
∏

m
P (L2

nm ≤ ∆) ∝ (
√

∆)N−1, (5)

from which Eq. (4) follows by differentiation. The other
cases are simple generalizations. For example, in the uni-
tary ensemble, each matrix element is a complex number,
and is only small when its real and imaginary parts are
separately small, yielding a factor of two in the expo-
nent. In general, therefore, the disorder-averaged DOS
at a given small λ vanishes exponentially in N .
Discussion.—In this work we have explored the spec-

tral structure of low-lying (i.e., long-lived) states of a de-
phasing Lindblad master equation with random Hamil-
tonian and jump operator. While the conditions under
which a random-matrix Hamiltonian captures the essen-
tial features of a physical system are well understood and
generic, the conditions for the system-bath coupling to
permit an RMT description are less clear. Hence, we
have checked that our main results, i.e., the gap in the L-
spectrum and the appearance of midgap states for large
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FIG. 4. (a) Probability density of the real part of the Liouvil-
lian eigenvalues near the origin for a model whose H is drawn
from the GOE and where the eigenvalues of the jump opera-
tor, L, are regularly spaced in [−

√
2,
√

2]. The results are for
γ = 50 and averaged over 100 realizations. (b) The first two
“excited” eigenstates of the Liouvillian with N = 60. Shown
are components along the L-populations |κ〉〈κ|, parameter-
ized by their L-eigenvalue, κ. (c) Autocorrelations in a model
with GOE H and L, γ = 200 and N = 60, averaged over 100
realizations. The solid line depicts 1/t decay.

γ, are robust to details of the coupling. Indeed, we find
that L-level repulsion is inessential since a model with
uniformly distributed L-eigenvalues yields similar results
[45]. Moreover, the coupling need not be random at all,
as shown by Fig. 4a where a gap and midgap states ap-
pear for a jump operator with evenly spaced eigenvalues.
Rather, the key ingredients are (1) that both H and L
have bounded spectra, and (2) that eigenvectors of L look
random in the eigenbasis of H and vice versa [45].

The most direct experimental consequence of our re-
sults is the nonanalytic behavior of the approach to
steady state as dissipation increases. Furthermore, our
analysis implies two outcomes for systems in the strong-
dissipation regime. First, the decay of an initial L-
population, |κ〉〈κ|, has a specific functional form on long
timescales. This can be probed by measuring the ob-
servable which determines the system-bath coupling (e.g,
the dipole moment of a chaotic quantum dot coupled
to electromagnetic noise). The system then collapses to
an L-population, which for large γ subsequently evolves
via hopping in the subspace of L-populations. Due to
the relatively local structure of the hopping (3), proba-
bility spreads ballistically, eventually becoming uniform.
This is reflected by the autocorrelations between consecu-
tive measurements outcomes C(t) = Tr[|κ〉〈κ|eLt|κ〉〈κ|],
that decays as 1/t for γ/2nmax < t < γ/2, as follows
from expanding |κ〉〈κ| in the L-eigenmodes [45], see Fig.
4c. Here, nmax is the number of states separated from
the continuum, which we find grows with N [45]. Sec-
ondly, the late-time distribution of the measurement out-
come is determined by the slowest-decaying modes, and
its deviation from the distribution in the steady state is
given by the distribution of L-populations in the midgap
states. We have obtained explicit expressions for the
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latter within the model studied, illustrating that they
correspond to the longest-wavelength modulations of the
L-populations, see Fig. 2. We have also checked that
their general form is insensitive to the choice of model,
as shown by Fig. 4b and in [45].

This work has focused on the GOE because of its sim-
plicity and its direct relation to noisy dynamics. A com-
panion paper [44] finds similar features for ensembles of
non-Hermitian L with no symmetries. A natural question
is how far these results extend to other random matrix
ensembles, as well as to systems with locality constraints
[49], such as band matrices.

Note Added: While this manuscript was under prepa-
ration, the preprint [27] appeared which studies spectral
properties of random Lindblad generators with N2 − 1
jump operators with no symmetries, and no Hamiltonian.
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[36] K. Macieszczak, M. Guţă, I. Lesanovsky, and J. P. Gar-

rahan, Phys. Rev. Lett. 116, 240404 (2016).
[37] I. Lesanovsky and J. P. Garrahan, Phys. Rev. Lett. 111,

215305 (2013).
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