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We perform precise studies of two- and three-body interactions near an intermediate-strength
Feshbach resonance in 39K at 33.5820(14) G. Precise measurement of dimer binding energies, span-
ning three orders of magnitude, enables the construction of a complete two-body coupled-channel
model for determination of the scattering lengths with an unprecedented low uncertainty. Utilizing
an accurate scattering length map, we measure the precise location of the Efimov ground state to
test van der Waals universality. Precise control of the sample’s temperature and density ensures
that systematic effects on the Efimov trimer state are well understood. We measure the ground
Efimov resonance location to be at −14.05(17) times the van der Waals length rvdW, significantly
deviating from the value −9.7 rvdW predicted by van der Waals universality. We find that a refined
multi-channel three-body model, built on our measurement of two-body physics, can account for
this difference and even successfully predict the Efimov inelasticity parameter η.

The few- and many-body physics of an interacting gas
are intractable when treated in full microscopic detail.
However, the problem can be greatly simplified in a di-
lute ultracold atomic gas with near-resonant interactions,
where the two-body scattering length a greatly exceeds
the van der Waals length rvdW characterizing the range
of the interacting potential. In such scenario, all physi-
cal observables can be parametrized by only two dimen-
sionless quantities describing the strength of interactions
and the level of quantum degeneracy [1]: na3 and nλ3,
where n is the atomic density and λ is the thermal wave-
length. Then, continuous scaling transformations, such
as n → ζ−3n, a → ζa and λ → ζλ, will leave all ob-
servables and their dynamics invariant when measured
in rescaled units. Such behavior is regarded as universal,
insensitive to microscopic details in the problem and the
chosen atomic species.

Nevertheless, the principle of universality has its limi-
tations. For example, unless all length scales in the prob-
lem (|a|, λ, n−1/3, etc.) greatly exceed rvdW, nonuni-
versal corrections due to short-ranged physics must be
implemented. Even when these conditions are well sat-
isfied, a more fundamental effect concerning few-body
interactions can break universality: the Efimov effect [2].
Within this phenomenon, short-ranged near-resonant
two-body interactions give rise to a three-body attraction
that hosts an infinite series of Efimov trimer states. Each
consecutive state meets the three-body continuum at a
particular value of scattering length that is 22.7 times
larger than of the previous state, with a− defining the
ground state location [1]. While these fixed length scales
break the continuous aspect of universality, there remains
a discrete version of scale transformations, with ζ values
restricted to 22.7j , where j is an integer.

The value of a− was originally thought to be set by

the details of the short-range interaction, and therefore
to be thoroughly non-universal. However, it was noted
that across many atomic species and different Feshbach
resonances the measured a− value was within 20% of
−9 rvdW [3–6]. This suggested that a− depends only
on the longest-range part of the short-range physical
interaction. Theory indeed predicts a similar value of
a− = −9.7 rvdW [4–10]. This “van der Waals universal-
ity”, together with the Efimov scaling, allows one to pre-
dict the full Efimov structure to arbitrarily large length
scales.

Our experimental goal is to definitively challenge the
robustness of this van der Waals universality. It has been
speculated [11–18] that universality of the Efimov struc-
ture depends on the breadth of the Feshbach resonance,
quantified by dimensionless parameter sres. Very roughly,
sres may be understood as the parameter that charac-
terizes the range of scattering length, |a| >∼ 4rvdW/sres,
over which the two-body Feshbach resonance has univer-
sal structure, meaning e.g. that the two-body binding
energy Eb = h̄2/(ma2) [19]. One might expect the three-
body Efimov resonances to be more precisely universal
when they fall more deeply within the range of a for which
the two-body Feshbach resonant structure is universal.
In previous experiments on homonuclear Efimov states
[3, 17, 20–28] there is some support for the notion that
as sres gets smaller, the measured a− values should begin
to deviate from the universal a− = −9.7 rvdW value, see
Fig. 1. However, this conclusion is only tentative due to:
large experimental uncertainties in the measured a− [17];
unexpected temperature dependence [28]; and large sys-
tematic uncertainties in the parameters of the underly-
ing two-body Feshbach resonance [17, 20, 21, 26]. While
there are intriguing experimental [15, 29–38] and theo-
retical [35, 39–41] results for the heteronuclear cases, the
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FIG. 1. A survey of experimental a− values in homonu-
clear systems, inspired by [15]. Previous results (blue circles)
[3, 17, 20, 24–28] show a tentative dependence of a− value on
the Feshbach resonance strength parameter sres. Our mea-
surement (red star; red band in the inset) is the strongest ev-
idence of departure from the −9.7± 15% rvdW value (dashed
line and gray area) predicted by van der Waals universality
[4, 5, 7, 9]. The inset shows calculations for a− based on
a single van der Waals potential [7] with N = 1–7 s-wave
two-body bound states (green squares) and results from our
multi-channel model [42] with N = 2–5 (black triangles).

possible influence of many additional parameters (mass
ratio, quantum statistics, inter- and intra-species scatter-
ing lengths) makes the question of universality in those
systems a topic for an entirely separate investigation.

In this Letter, we present a precise test of the van
der Waals universality near a Feshbach resonance with
sres = 2.57 [42], intermediate between the narrow (sres �
1) and broad (sres � 1) regimes. Specifically, we accu-
rately determine the value of a− by having precise control
of critical experimental parameters such as temperature,
density and scattering length. Because of our tight con-
trol of both systematic and statistical error, ours is the
first measurement of a compelling nonuniversal a− value
in a homonuclear Efimov resonance.

A thorough characterization of the Feshbach resonance
and an accurate map of the scattering length are required
for precise determination of the a− value. Accordingly,
we perform high-precision spectroscopy on a pure gas of
Feshbach dimers and accurately determine their binding
energies. This measurement enables us to refine our two-
body model and accurately predict the scattering length
in our Efimov measurements [42]. In other Feshbach res-
onance studies, methods based on number loss or ther-
malization rate have occasionally given inconsistent re-
sults. By contrast, dissociation spectroscopy of Feshbach
dimers isolates two-body physics and accurately deter-
mines resonance properties [43–46].

Precision molecular spectroscopy requires long interro-
gation times under unperturbed conditions. We stabilize
the magnetic field to the mG-level and eject all unpaired
atoms, whose presence affects dimer lifetimes and compli-
cates the spectroscopy. A pure molecular sample is pre-
pared by starting with ∼ 105 atoms confined in an optical
dipole trap and a temperature ∼ 300 nK. We transfer a
fraction of atoms in the |F = 1,mF = −1〉 hyperfine state
to the dimer state by magneto-association [47]. Subse-
quently, all residual unpaired atoms are blasted away by
multiple radio-frequency (RF) and optical pulses, leav-
ing a pure sample of ∼ 104 molecules. Lastly, the mag-
netic field B is ramped to various values, corresponding
to different binding energies, where we perform RF spec-
troscopy.

We dissociate molecules by transferring one atom of
the pair from the |F = 1,mF = −1〉 interacting state to
the |F = 1,mF = 0〉 imaging state. The final state being
nearly non-interacting enables us to directly probe the
dimer binding energy. Additionally, the transition being
magnetically less sensitive near B values of interest allows
long molecular interrogation times, limited only by dimer
lifetimes, to achieve high spectral resolution. We scan RF
frequency and measure the transferred fraction, keeping
pulse energy low to limit saturation effects and dissociate
a maximum 50% of molecules. We fit the measured spec-
trum to a functional form given by the Franck-Condon
factor of the bound-free transition [43], and extract the
molecular binding energy Eb [42, 48]. We repeat this pro-
cedure to determine Eb at different magnetic field values,
as depicted in Fig. 2.

The universal expression Eb = h̄2/(ma2) is always ac-
curate for large enough a. A more refined expression
Eb = h̄2/(m (a− ā)

2
), which introduces the mean scat-

tering length ā ≈ 0.956 rvdW [49], is valid at smaller
values of a as long as a � rvdW/sres [50]. However,
such treatments are inadequate for narrow and interme-
diate resonances. To better compare to our experimental
data, we developed a coupled-channel model [42] capable
of describing our high-precision Eb data. We fine-tune
the model’s parameters, the singlet and triplet scatter-
ing potentials, to accurately match most of our measure-
ments to within 1%, as depicted in Fig. 2 inset. As
a result, we determine a particular linear combination
of the singlet and triplet scattering lengths 0.2470 aS +
0.9690 aT = 1.926(2) a0 [42], further constraining the
previously-reported values of aS = 138.49(12) a0 and
aT = −33.48(18) a0 [51, 52]. Furthermore, we constrain
the Feshbach resonance location to within 33.5820(14) G
[42], a two-orders of magnitude improvement over the
previous measurement [17] and an unprecedented [44] ac-
curacy better than 3× 10−5 of the resonance width.

With a good grasp on two-body physics, we seek to
test the validity of van der Waals universality near our
Feshbach resonance. We perform precision atom-loss
spectroscopy to obtain the Efimov ground state location
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FIG. 2. Precise measurement of Feshbach dimer binding ener-
gies Eb as a function of magnetic field B. Small experimental
uncertainties on Eb, spanning from 56 Hz at Eb/h = 2.103 kHz
to 1.0 kHz at Eb/h = 1167.2 kHz, are not resolvable in the fig-
ure. A coupled-channel (cc) model is required to describe our
data [42]. The solid curve shows the resulting fit and the
inset shows remarkably small fractional residuals. Contrary
to applicability near broad Feshbach resonances [50], univer-
sal expressions (dashed and dotted curves) are insufficient for
describing Eb near our intermediate strength resonance.

a− [53]. Specifically, we measure the inelastic three-body
recombination coefficient L3 in the vicinity of a− where
the presence of the nearby Efimov state leads to a res-
onant enhancement of the three-body loss, an Efimov
resonance. A zero-temperature zero-range expression [1]
relates L3 features to a− for a < 0:

LT=0
3 (a) ≈ 3h̄a4

m

4590 sinh(2η)

sin2(s0 ln(a/a−)) + sinh2(η)
, (1)

where the dimensionless inelasticity parameter η char-
acterizes the Efimov resonance width and the constant
s0 ≈ 1.00624 fixes Efimov series spacing eπ/s0 ≈ 22.7.
While Eq. (1) adequately describes L3 in the limit of
λ� |a|, for increasing temperatures it becomes less valid
and a finite-temperature zero-range model [54, 55] is re-
quired to describe the three-body loss, for a < 0:

L3(a, T ) =A
72
√

3π2h̄
(
1− e−4η

)
mk6tha

2
(2)

×
∫ ∞
0

(
1− |s11(x)|2

)
e−x

2/(ktha)
2

x∣∣∣∣1 + s11(x)
(
−xa−
1.017|a|

)−2is0
e−2η

∣∣∣∣2
dx ,

where kth =
√
mkBT/h̄, x = k|a|, A is a numerical factor

that improves the fit quality by allowing for uncertainty

in the absolute density, and the complex function s11(x)
is an S-matrix element from Refs. [54] and [56].

We perform L3(a) measurements at different tempera-
tures and extract a− using the zero-range model Eq. (2).
We begin with dilute thermal samples at a = −100 a0.
We ensure our gas is fully thermalized and make trapping
potentials sufficiently deep to be certain that evapora-
tive losses have a negligible effect on our measurements.
Then, we ramp a to a value of interest and let three-
body loss occur for a varied amount of time, allowing up
to 30% decay of the initial atom number. Subsequently,
we ramp a to a value of −200 a0, transfer the remaining
atoms to the |F = 2,mF = −2〉 state and perform time-
of-flight imaging. We determine the time-dependent den-
sity n from the measured temperatures and atom num-
bers [42]. For each scattering length, we extract L3 value
by numerically solving the expression [57]:

1

N

dN

dt
= −L3〈n2〉 − α , (3)

where 〈n2〉 = 1
N

∫
n3(~x)d3x and the constant 1/α > 40 s

is the a-independent one-body decay time measured at
a = −100 a0, which is negligible compared to the three-
body loss timescales of 50–170 ms for our n near a−. Ad-
ditionally, we check that the two-body loss contribution
−L2〈n〉 to Eq. (3), with L2 predicted by our two-body
model, is also negligible.

Accurate calibration of a and density (and not just rel-
ative changes) enables accurate comparison of the mea-
sured L3(a) values at different temperatures, as depicted
in Fig. 3. We fit each temperature data to Eq. (2) with
three parameters: a− (see inset of Fig. 3), η and A. We
take the weighted mean across all temperatures to ex-
tract single values a− = −908(11) a0 = −14.05(17) rvdW
and η = 0.25(1) [42]. Eq. (2) will eventually become in-
accurate at large a, if only because the functional form
requires the first two resonances be a factor of 22.7 apart.
We vary the fit range from all a to only |a| < λ/10 and
take the maximal spread of all fit errors as the uncer-
tainty on a− and η.

In addition to finite-temperature effects, we check the
effect of high density on L3 measurements. We prepare
samples with varied densities yet similar temperatures
∼ 200 nK. While measurements with the two lowest den-
sities, where initial

∣∣na3∣∣ = 1.3 × 10−5 and 2.4 × 10−5

at a−, are consistent, we observe a suppression and shift
of the Efimov resonance for our highest-density gas (see
Fig. 4), where

∣∣na3∣∣ = 9.7 × 10−5 at a− and the col-
lision rate is no longer small compared to the trapping
frequency. The latter condition in particular can lead to
systematic errors. A recently published study [28], on
the same resonance as we discuss here, reports counter-
intuitive temperature-induced shifts in the Efimov peak
at high values of

∣∣na3∣∣, collision rate, and nλ3. We see no
such effects in the data (shown in Fig. 3) that we use to
determine a−; for those fits we use only

∣∣na3∣∣ < 4×10−5
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FIG. 3. Temperature dependence of the three-body loss co-
efficient L3, scaling as a4 scaling (dashed) [57–59], is en-
hanced near an Efimov ground state located at a−. For each
temperature, we fit our data using a zero-temperature zero-
range model (Eq. (1)), limiting fits to data points for which
|a| < λ/10 (short vertical lines), to extract L3/a

4 peak lo-
cation and a finite-temperature zero-range model (Eq. (2),
solid) to extract the true a− value. The inset shows the
extracted peak locations (circles) and a− values (squares),
where both coincide at the lowest temperature. The observed
a− value significantly deviates from the a− = −630 a0 value
(inset dashed line) predicted by van der Waals universality [7].

5 0 0 1 0 0 0 1 5 0 0

1 0 - 2 4

1 0 - 2 3

1 0 - 2 2

1 0 - 2 1

 
 
 

FIG. 4. Suppression of the Efimov resonance in a high-density
gas. Measurements of high- and intermediate-density sam-
ples are performed with the same experimental conditions,
contrasting only in the initial atom number. As a result,
differential comparison of L3 values between those two mea-
surements is of greatest interest. Small L3 deviations at low
|a| between the lowest-density data and the other data are
attributed to differing trap conditions that result in evapora-
tion. However, for our highest density data, we observed a
strong suppression of L3 near a = a−.

and nλ3 < 0.2 [42]. The data shown in Fig. 3 agree well
with the prediction of Eq. (2), not just in the shape of
L3(a, T ), but in its overall amplitude A. The fact that
for all values of T our fit A is within 43% of 1.0, con-
sistent with small discrepancies in the density calibra-
tion, is further evidence that our results are not contam-
inated by high degeneracy, many-body effects, collisional
avalanche, or misassignment of resonance peaks.

Our final value for a− = −908(11) a0, plotted as a
red star in Fig. 1, differs from the range of theoretical
predictions [4–7, 9] for the universal result, a− = −630±
15% a0 by many times our estimated error. How does
this firmly established discrepancy compare to theoretical
efforts to model the “edges of universality”?

The range a− = [−11.2,−8.3] rvdW of theoretical pre-
dictions for the universal value arises because the calcu-
lated value of the ostensibly universal a− depends, even
if only modestly, on the details of short-range treatment
[7]. It seems likely this variability will be only more
pronounced for a regime where universality is already
beginning to fail on its own. A key qualitative lesson
from Ref. [16] is the prediction of a nonuniversal value of
a− ≈ −12 rvdW for sres = 2.57 and abg = −19.6 a0. How-
ever, going beyond the results from Ref. [16], we find that
a− also depends on the number of bound states in the
model for small sres and abg. In our theoretical effort
to accurately describe three-body physics [42], we con-
structed a more realistic multi-channel model using re-
alistic hyperfine and Zeeman spin structure, with triplet
and singlet scattering lengths constrained to equal our
empirically determined values. The adjustable parame-
ters are the inner walls of the van der Waals potentials
tuned to give the desired number of bound states. The
results are shown as black triangles in the inset of Fig. 1.
We see that the predicted a− result more closely approx-
imates our distinctly nonuniversal measurement as we go
to a larger number of bound states. An empirical at-
tempt to extrapolate to a very large number of bound
states yields alim− = −13.1 rvdW and ηlim = 0.21. This is
the first attempt to get a quantitatively accurate calcu-
lation for η close to our measured value of 0.25(1). The
reasonable agreement with the experimental value shows
the importance of properly modeling the diatomic molec-
ular spectra and its hyperfine structure [60].

To conclude, we precisely measure dimer binding en-
ergies, the Feshbach resonance location, and the Efimov
ground location. Our results, in particular the observa-
tion of a definitively nonuniversal Efimov state location
and its corresponding inelasticity parameter, suggest that
more realistic models, like the one we used, can be nec-
essary to fully understand and accurately describe few-
body physics in ultracold atomic systems.
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Nägerl, F. Ferlaino, R. Grimm, P. S. Julienne, and J. M.
Hutson, Phys. Rev. A 87, 032517 (2013).

[67] A. D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. En-
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