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We construct the first dynamically stable ergostars (equilibrium neutron stars that contain an ergoregion) for
a compressible, causal equation of state. We demonstrate their stability by evolving both strict and perturbed
equilibrium configurations in full general relativity for over a hundred dynamical timescales (& 30 rotational
periods) and observing their stationary behavior. This stability is in contrast to earlier models which prove
radially unstable to collapse. Our solutions are highly differentially rotating hypermassive neutron stars with a
corresponding spherical compaction of C = 0.3. Such ergostars can provide new insights into the geometry
of spacetimes around highly compact, rotating objects and on the equation of state at supranuclear densities.
Ergostars may form as remnants of extreme binary neutron star mergers and possibly provide another mechanism
for powering short gamma-ray bursts.

Introduction.—Two key characteristics of black holes
(BHs) are the event horizon and the ergoregion. The former
represents the “surface of no return”, i.e. the boundary of the
region of spacetime we cannot communicate with (at least in
classical theory), while the latter is a region where there are
no timelike static observers and all trajectories (timelike or
null) must rotate in the direction of rotation of the BH (frame-
dragging). For stationary, rotating spacetimes the existence of
an event horizon implies the existence of an ergoregion, but
the opposite is not true. Ergoregions are associated to two im-
portant astrophysical processes which are both related to the
extraction of energy from a rotating BH: First, as described
by Penrose [1], since the energy of a particle as seen by an
observer at infinity can be negative inside the ergoregion, en-
ergy extraction is possible through a simple decay. Second is
the powering of relativistic jets through the Blandford-Znajek
process [2]. Although according to the membrane paradigm
[3], jet formation is associated with the BH horizon, Komis-
sarov pointed out [4, 5] that the threading of the ergoregion
by magnetic field lines and the subsequent twisting of them
due to frame dragging is all that is necessary for the energy
creation of a relativistic jet, while a horizon is not. Prelim-
inary force-free numerical simulations of ergostars using the
Cowling approximation confirm this hypothesis [6].

A stationary, asymptotically flat spacetime possesses a
timelike Killing vector that asymptotically corresponds to
time translations. This vector inside an ergoregion tips over
and becomes spacelike, making the conserved total energy
of a freely moving particle there negative with respect to the
asymptotic observer. A nonaxisymmetric perturbation that ra-
diates positive energy at infinity will make the negative en-
ergy in the ergoregion even more negative in order for the
conservation of energy to be satisfied. This will lead to a cas-
cading instability that was first discovered by Friedman [7]
and recently was put on a rigorous footing by Moschidis [8].
It belongs to the class of “rotational dragging instabilities”
whose most famous member is the so-called Chandrasekhar-
Friedman-Schutz (CFS) instability (induced by gravitational-
radiation) [9–11] valid for any rotating star, irrespective of its

rotation rate. In this paper we call stars that contain ergore-
gions ergostars.

The fact that the ergoregion instability was considered “sec-
ondary” was not only due to the scarcity of rotating star mod-
els exhibiting such behavior, but equally importantly, due to
its very long secular (& gravitational radiation) timescale
[12–14]. Although the existence of ergoregions in rotating
stars has been questioned [15], they were found by a number
of authors since the first work of Wilson [16], who employed
a compressible equation of state (EoS), differential rotation,
and an assumed density distribution. Butterworth and Ipser
[17] and more recently Ansorg, Kleinwachter, and Meinel
[18] constructed self-consistent, rapidly rotating, incompress-
ible stars containing ergoregions (see also [19, 20] for ergore-
gions in the self-gravitating Vlasov system). A larger parame-
ter space was investigated by Komatsu, Eriguchi, and Hachisu
[21] (KEH) who presented self-consistent solutions with a
polytropic EoS and differential rotation, reaching all the way
up to the most extreme toroidal configurations (Rp/Re = 0,
whereRp, Re are the polar and equatorial radii, respectively).

The question we want to answer in this Letter is threefold:
First, whether any of the known ergostars with a compressible
and causal EoSs are dynamically stable? If not, whether the
instability is caused by the ergoregion or is it intrinsic to the
other properties of the star. This is investigated by evolving
ergostars together with nearby equilibria that do not exhibit
ergoregions. The whole analysis is performed in full general
relativity and without any approximation, such as the slow-
rotation approximation typically used in perturbation analy-
sis. Finally, is it possible to identify any dynamically stable
ergostars? We will show that all of the models presented in
[21] that we have evolved are dynamically unstable and ar-
gue that it will be very difficult, if not impossible, to have
stable ergostars with a simple polytropic EoS. However, we
were able to construct a compressible EoS that leads to dy-
namically stable ergostars that persist for our entire integra-
tion timescale, which is at least ∼ 20 ms (& 100 dynamical
times). We present a full general relativistic analysis of multi-
ple models with this property.
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TABLE I. The equilibrium models. The polytropic constant used for the Γ = 3 models yields a maximum spherical gravitational mass
of 4.066M�, which coincides with the maximum spherical gravitational mass of the ALF2cc EoS. Parameter Â = A/Re, where Re the
equatorial radius, determines the degree of differential rotation, Rp/Re is the ratio of polar to equatorial radius, M0 is the rest mass, M is
the ADM mass, J is the ADM angular momentum, T/|W | is the ratio of kinetic to gravitational energy, Pc is the rotational period of the star
that corresponds to its central angular velocity Ωc, Ωc/Ωs is the ratio of the central to the surface angular velocity, and tdyn ∼ 1/

√
ρ the

dynamical timescale.

Model EoS ER Â−1 Rp/Re M0 [M�] M [M�] Re [km] J/M2 T/|W | Pc/M Ωc/Ωs tdyn/M

iA0.2-rp0.50 ALF2cc 7 0.2 0.5000 6.683 5.360 12.62 0.8698 0.2266 27.31 1.328 6.9

iA0.2-rp0.47 ALF2cc 7 0.2 0.4688 6.973 5.587 12.55 0.8929 0.2423 25.21 1.359 6.6

iA0.2-rp0.45 ALF2cc 3 0.2 0.4531 7.130 5.709 12.49 0.9035 0.2501 24.18 1.378 6.5

iA0.3-rp0.47 ALF2cc 3 0.3 0.4688 6.900 5.514 11.52 0.8670 0.2354 20.55 1.753 6.7

iA0.4-rp0.47 ALF2cc 3 0.4 0.4688 6.679 5.334 11.04 0.8323 0.2205 17.52 2.216 6.9

g3-iA0.4-rp0.44 Γ = 3 7 0.4 0.4375 6.832 5.761 14.62 0.8617 0.2302 20.24 2.027 6.3

g3-iA0.4-rp0.42 Γ = 3 3 0.4 0.4219 6.929 5.845 14.41 0.8704 0.2372 19.21 2.073 6.2

g3-iA0.5-rp0.36 Γ = 3 3 0.5 0.3594 6.688 5.718 12.27 0.8640 0.2473 13.11 2.876 6.4

Initial data.—Our initial data are constructed with the
Cook-Shapiro-Teukolsky (CST) code [22] using two equa-
tions of state (EoSs). The first one is a Γ = 3 polytrope, which
is known to produce differentially rotating ergostars [21]. Our
motivation was to find stable configurations that ideally can
represent neutron star (NS) mergers, thus we have chosen
to investigate the Γ = 3 case since it produced ergostars at
higher Rp/Re, i.e. with almost spheroidal geometries. A sec-
ond criterion for our choice is to find ergostar models with
a low T/|W | so that they are less susceptible to nonaxisym-
metric instabilities. Here T, W are the rotational and gravita-
tional potential energy of the stars, respectively. The second
EoS we use is based on the ALF2 EoS [23] and denoted as
ALF2cc. We replace the region where the rest-mass density
ρ0 ≥ ρ0s = ρ0nuc = 2.7× 1014 gr/cm3 by

P = σ(ρ− ρs) + Ps . (1)

Here σ is a dimensionless parameter, ρ is the total energy den-
sity, and Ps the pressure at ρs. The solutions presented in this
work assume σ = 1.0, i.e. a causal core, which represents
the maximally compact, compressible EoS [24]. Apart from a
small crust (∼ 6%Re), the density profiles of all our models
resemble the ones found in quark stars which exhibit a finite
surface density. In this way we conjecture that it would be
possible to construct dynamically stable quark stars having an
ergoregion. A parameter study for other values of σ, as well
as different matching densities, will be presented elsewhere
[25].

The differential rotation law is a choice needed to solve for
hydrostatic equilibrium. We employ the so called “j-const.”
law [26], which is written as j(Ω) = A2(Ωc − Ω), where j
is the relativistic specific angular momentum, A is a constant
that determines the degree of differential rotation and has units
of length, and Ωc is the angular velocity at the center of the
star. Other choices like the ones presented in Refs. [27, 28]
are also possible [25]. All our initial models are shown in
Table I.

Evolutions.—We use the ILLINOIS GRMHD adaptive-
mesh-refinement code (see e.g. [29]), which employs the
Baumgarte–Shapiro–Shibata–Nakamura (BSSN) formulation
of the Einstein’s equations [30, 31] to evolve the spacetime
with the standard puncture gauge conditions. The equations
of hydrodynamics are solved in conservation-law form adopt-
ing high-resolution shock-capturing methods. The pressure
is decomposed as a sum of a cold and a thermal part, P =
Pcold + (Γth− 1)ρ0(ε− εcold) where Pcold, εcold are the pres-
sure and specific internal energy as computed from the ini-
tial data EoS. They are calculated using either a polytropic
pressure-density relation or Eq. (1). For the thermal part we
take Γth = 5/3. The growth of nonaxisymmetric modes is
monitored by computing Cm =

∫
ρ0u

t√−geimφd3x [32].
In our simulations we used two resolutions, for the ALF2cc
models with ∆xmin = 153, 92 m. For the Γ = 3 models we
used three resolutions with ∆xmin = 200, 140, 92 m. Here
∆xmin is the step interval at the finest refinement level. Note
that for the same ∆xmin there is more grid coverage across
the star for the Γ = 3 models because Re is greater.

Snapshots during the evolution of the ergostars with the
ALF2cc and the Γ = 3 EoSs are depicted in Figs. 1 and
Fig. 2 where two prime examples of each category are plot-
ted. Fig. 1 shows the normalized rest-mass density as well
as the ergosurface (gtt = 0, inner green donut) of the model
iA0.2-rp0.45 at 4 instances t/Pc ≈ 0, 5, 10, 30 and consti-
tutes our prime, dynamically stable ergostar using the ALF2cc
EoS that exhibits a causal core, Eq. (1). As it is clear from
that figure the star retains both its axisymmetric structure as
well as the geometry of the ergoregion for the whole period of
our evolution that reaches approximately 30 rotation periods
or 100 dynamical timescales. This ergostar is the first member
that exhibits an ergoregion along a constant rest-mass (central)
density ρ0 = 4.52× 1014 gr/cm3 sequence with a decreasing
Rp/Re ratio and the j-const law with Â = 5. All equilibrium
models before that (i.e. for larger ratios of Rp/Re) do not
contain any ergoregions, while all models after that, i.e. for
greater deformations (smaller ratios of Rp/Re), contain er-
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FIG. 1. Rest-mass density and the ergosurface for the ALF2cc EoS, model iA0.2-rp0.45, at 4 different instances of time. The green donut
indicates the ergoregion. Stability is maintained for this equilibrium ergostar.

FIG. 2. Similar to Fig. 1 but for the Γ = 3 EoS model g3-iA0.4-rp0.42. This equilibrium ergostar undergoes dynamical collapse to a BH. The
black inner spheroid in the last frame shows the apparent horizon.

goregions whose size increases with increasing deformation.
In other words, for the particular sequence of rest-mass den-
sity and differential rotation law, ergostar iA0.2-rp0.45 is (a)
the most spheroidal, (b) has the lowest T/W , and (c) has the
smallest ergoregion. Note that T/W = 0.25, which is cer-
tainly at the boundary of dynamical stability [33, 34]. Less
deformed models iA0.2-rp0.50 and iA0.2-rp0.47 belong to the
same sequence as the ergostar iA0.2-rp0.45 and have the same
differential rotation law but contain no ergoregions. These
normal star equilibria have also a smaller value of T/W , and
our simulations confirm that they are dynamically stable sim-

ilarly.
Fig. 3 left panel, shows the growth of nonaxisymmet-

ric modes for normal star iA0.2-rp0.50 as well as ergostars
iA0.2-rp0.45, iA0.3-rp0.47, iA0.4-rp0.47 using ∆xmin = 153
m. The same behavior is observed at higher resolution with
∆xmin = 92 m. Evidently the evolution of all stars maintains
axisymmetry on dynamical timescales. Particularly during the
last 10 rotation periods both the normal star iA0.2-rp0.50 and
the ergostar iA0.2-rp0.45 (which is shown also in Fig. 1) show
a saturation of the m = 1, 2 growth amplitude. Ergostars
iA0.3-rp0.47 and iA0.4-rp0.47 have the same central density
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FIG. 3. Time evolution of the m = 1, 2 modes for the ALF2cc EoS models (left panel), the Γ = 3 EoS models (middle panel), and T/W
(right panel). The corresponding dynamical timescales are listed in Table I.

as iA0.2-rp0.45 but larger differential rotation: Â = 3.33 and
2.5 respectively. In the Supplement we present additional ev-
idence for the dynamical stability of these models by seeding
them with an m = 1 or m = 2 density perturbation and in-
specting their non-growth in the timescale of our simulations.
In addition we show that these stars are stable to quasiradial
density perturbations.

Fig. 2 shows the normalized rest-mass density and ergo-
surface for the Γ = 3 EoS ergostar g3-iA0.4-rp0.42 evolved
using ∆xmin = 200 m at 4 instances t/Pc ≈ 0, 4, 5, and at
BH formation. Although the criterion t · t = gtt = 0 (where
t = ∂t is the time coordinate basis vector) for ergoregion iden-
tification does not strictly hold in the nonstationary spacetime
of the collapsing star, it is still a reasonable measure given the
stationary initial and final gravitational equilibria. This model
is the first member that exhibits an ergoregion along a con-
stant rest-mass density ρ0 = 3.846 × 1014 gr/cm3 sequence
with Â = 2.5. All equilibrium models with less deformation
do not contain any ergoregions, while all models with larger
deformations contain larger size ergoregions. Also ergostar
g3-iA0.4-rp0.42 is less deformed and has smaller T/W than
any of the Γ = 3 models of Ref. [21], therefore is less prone
to bar-mode instabilities. Other models in Ref. [21] contain-
ing ergoregions have very small ratios of Rp/Re and much
higher T/W , thus the possibility of being dynamically unsta-
ble as well is much higher. This was indeed proven recently
in a select number of such extreme toroids in [35]. Fig. 3
middle panel shows the growth of nonaxisymmetric modes
for the Γ = 3 EoS models g3-iA0.4-rp0.44 (normal star), g3-
iA0.4-rp0.42 (ergostar shown in Fig. 2) and g3-iA0.5-rp0.36
(also an ergostar) until just after BH formation. The small
values of Cm/C0 imply the free-fall collapse of those mod-
els is axisymmetric. The resolution used is ∆xmin = 140 m.
In the right panel of Fig. 3 we plot T/W for all the mod-
els discussed above. As it is evident the Γ = 3 models all
collapse while T/W slightly decreases from their initial val-
ues. Also ergostar iA0.2-rp0.45 has the largest T/W in the

ALF2cc EoS set of models while the ergostar with the highest
degree of differential rotation, iA0.4-rp0.47, has the smallest.
The radial instability of the Γ = 3 EoS models of Table I is
verified by using three different resolutions with the highest
one having ∆xmin = 92 m. The evolution of the shape of the
ergosphere for the model g3-iA0.4-rp0.42 is presented in the
Supplement.

Discussion.—In this Letter we presented dynamically sta-
ble equilibrium rotating NSs that contain ergoregions. The
EoS that we employed is causal at the core and ALF2 at the
outer layers of the star. We also proved that previously cal-
culated polytropic ergostars are dynamically unstable. The
secular evolution of our models will probably be determined
by the Friedman instability [7] in the absence of other dissipa-
tive mechanisms. Despite that, and given the long timescales
involved, the possibility of existence of such equilibria raises
a number of questions, the most obvious of them being the
fate of ergostars exhibiting internal dissipative mechanisms,
such as viscosity or magnetic fields (which may serve as tur-
bulent viscosity). Preliminary calculations of magnetic effects
in fixed spacetimes [6] have shown that such systems can
launch jets similar to BHs surrounded by magnetized disks.
If the merger of two NSs forms an ergostar remnant which
can launch a jet, the timescale for jet formation will be ear-
lier than the one for a normal hypermassive NS [36, 37]. This
feature may have consequences in the theoretical analysis of
events like GW170817 and its short gamma-ray burst counter-
part GRB 170817A. Such open problems, as well as questions
related to the range of EoSs and differential rotating laws that
can lead to ergostars, or the possibility of binary ergostar rem-
nants, are under investigation.

Movies highlighting results of our simulations can be found
at http://research.physics.illinois.edu/
cta/movies/Ergostar/.
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