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2Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA

(Dated: October 7, 2019)

We prove a remarkable combinatorial symmetry in the number of spanning configurations in site
percolation: for a large class of lattices, the number of spanning configurations with an odd or even
number of occupied sites differs by ±1. In particular, this symmetry implies that the total number
of spanning configurations is always odd, independent of the size or shape of the lattice. The class
of lattices that share this symmetry includes the square lattice and the hypercubic lattice in any
dimension, with a wide variety of boundary conditions.

INTRODUCTION

Percolation theory started in 1941 with the work of
Flory on gelation [1] and its theoretical framework was
formulated 1957 by Broadbent and Hammersley [2].
Ever since then, it has been a very active field of research.
Despite its maturity, most of what we know about per-
colation is still based on numerical computations, for
which clever algorithms like [3] and [4] had been devel-
oped. In contrast, exact mathematical results are rare
and mostly limited to two-dimensional systems of infi-
nite size. Examples include the percolation thresholds
for some planar lattices found by Sykes and Essam [5] or
the celebrated formulas for the critical spanning proba-
bilities derived from conformal invariance by Cardy [6]
and Watts [7].

Exact results for finite systems are even rarer, even in
two dimensions. A recent example is the discovery of
an equation that connects the average number of clus-
ters and the wrapping probabilities for two-dimensional
percolation in periodic lattices of any size [8].

In this contribution, we present a new combinatorial
symmetry in the number of spanning configurations in
site percolation. Our result holds exactly for finite sys-
tems in all dimensions for a broad class of lattices, in-
cluding the square and hypercubic lattices, and for a
wide variety of boundary conditions. In particular, this
symmetry implies that the total number of spanning con-
figurations in these systems is odd, independent of the
size or shape of the system.

We were motivated by a startling pattern that we
found empirically by exhaustive enumerating spanning
configurations on small instances of the square lattice.
Let An,m(k) denote the number of vertically spanning
configurations with k occupied sites in a lattice with m
rows and n columns, i.e., where there is a path of occu-
pied sites connecting the top row to the bottom row. We
can define a bivariate generating function

Rn,m(p, q) =

nm∑
k=0

An,m(k) pk qnm−k . (1)

In particular, Rn,m(−1, 1) is the difference between the

number of spanning configurations with an even or odd
number of occupied sites,

Rn,m(−1, 1) =
∑

k even

An,m(k) −
∑
k odd

An,m(k) . (2)

When we computed this difference explicitly for the
square lattice and for small n and m, we found the pattern
shown in Table I. It coincides with

Rn,m(−1, 1) = (−1)s(n,m) (3a)

where

s(n,m) =
⌊m

2

⌋
n +

⌈m
2

⌉
. (3b)

In other lattices such as the triangular lattice, the pat-
tern is much more complicated, see Table II. The result
for the square lattice is remarkable since the fact that
Rn,m(−1, 1) = ±1 implies that the number of spanning
configurations with even and odd k is almost identical,
and in particular that the total number of spanning con-
figurations is always odd; to our knowledge, this was
not known before. Last but not least, the pattern of ±1’s
given by s(n,m) cries out for an explanation.

The paper is organized as follows. We start by prov-
ing (3a) and (3b). We then generalize this result to site
percolation on the hypercube Zd and more general on

m
n

1 2 3 4 5 6 7 8

1 −1 −1 −1 −1 −1 −1 −1 −1
2 1 −1 1 −1 1 −1 1 −1
3 −1 1 −1 1 −1 1 −1 1
4 1 1 1 1 1 1 1 1
5 −1 −1 −1 −1 −1 −1 −1 −1
6 1 −1 1 −1 1 −1 1 −1
7 −1 1 −1 1 −1 1 −1 1
8 1 1 1 1 1 1 1 1

Table I. Values of Rn,m(−1, 1) for the square lattice with m rows
and n columns, for either open or cylindrical boundary condi-
tions.



2

m
n

1 2 3 4 5 6 7 8

1 −1 −1 −1 −1 −1 −1 −1 −1
2 1 0 −1 1 0 −1 1 0
3 −1 1 −2 3 −5 8 −13 21
4 1 −1 −3 0 11 9 −32 −57
5 −1 0 −5 −11 −42 −121 −393 −1204
6 1 1 −8 −9 121 0 −1805 1909
7 −1 −1 −13 32 −393 1805 −13514 75135
8 1 0 −21 57 1204 −1909 −75135 0

Table II. Values of Rn,m(−1, 1) for the triangular lattice.

cartesian graph products. Then we present the most gen-
eral form of our result in terms of percolation on graph
stacks. Finally we discuss the computation of Rn,m(−1, 1)
for pairs of matching lattices.

THE SQUARE LATTICE

We compute Rn,m(−1, 1) by constructing a partial
matching on the set of spanning configurations: that is,
for most spanning configurations σ we define a unique
partner σ′which is another spanning configuration, such
that σ′′ = σ. Moreover, σ and σ′ have opposite parity,
since they differ at a single site. As a result, the contribu-
tion of each matched pair (σ, σ′) cancels in the sum (2).
The contribution of the remaining spanning configura-
tions is simple enough that it can be written explicitly.

We number the rows 1, . . . ,m from top to bottom, and
the columns 1, . . . ,n left to right. Let σ be a spanning
configuration, and suppose that row 2 is not entirely
occupied. Then that row has a leftmost empty site (`, 2)
for some 1 ≤ ` ≤ n. We define σ′ by flipping the site
(`, 1) in the top row immediately above this empty site,
occupying it if it is unoccupied in σ and vice versa.

Since σ was a spanning configuration, it has a path
from the bottom row to the top row. This path arrives on
the top row by passing through two adjacent occupied
sites, (x, 2) and (x, 1) for some x. But since (`, 2) is empty,
x , `, and this path still exists in σ′. Thus σ′ is also a
spanning configuration, and clearly σ′′ = σ as claimed.

Let us now assume that the second row of σ is com-
pletely occupied. Then we look for the topmost even-
numbered row r that is not completely occupied. We
again find its leftmost empty site (`, r), and define σ′ by
flipping the site (`, r−1) in the odd-numbered row above
it. As before, σ has a path from the bottom to row r − 1
which passed through occupied sites (x, r) and (x, r − 1)
where x , `, and this path still exists in σ′. Moreover,
once the path arrives on row r − 1, it can connect imme-
diately to row r− 2 above it since that row is completely
occupied, and from there to the top of the lattice. Thus σ′

is again a spanning configuration, and σ′′ = σ as before.

m

n

Figure 1. Only configurations in which every even numbered
row is fully occupied need to be considered in computing (2).

This defines an opposite-parity partner σ′ for all
spanning configurations σ except those where all even-
numbered rows are fully occupied as shown in Fig. 1.
Configurations of this type are spanning configurations
if and only if no odd-numbered row is completely empty.
If ki denotes the number of occupied sites in row 2i − 1,
the total number of occupied sites is

⌊m
2

⌋
n +

d
m
2 e∑

i=1

ki ,

since there are bm/2c even-numbered rows and dm/2e
odd-numbered ones. The number of such configurations
is

(
n
k1

) (
n
k2

)
· · ·

(
n

k
d

m
2 e

)
,
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so (2) becomes

Rn,m(−1, 1) = (−1)bm/2cn
dm/2e∏

i=1

n∑
ki=1

(
n
ki

)
(−1)ki

= (−1)bm/2cn
 n∑

k=1

(
n
k

)
(−1)k


dm/2e

= (−1)bm/2cn+dm/2e ,

where we used the fact that
∑n

k=0
(n

k
)
(−1)k = (1 − 1)n = 0.

This proves (3a) and (3b).

GRAPH PRODUCTS AND BOUNDARY CONDITIONS

The n×m square lattice with open boundary conditions
can be written as the Cartesian graph product Ln×Lm [9]
where Ln is the path with n vertices. Let us now consider
graphs of the form G×Lm. Each row or “layer” 1 ≤ r ≤ m
is a copy of G, where each vertex (v, r) is connected to the
corresponding vertices (v, r ± 1) in the rows above and
below it. For instance, if we use cylindrical boundary
conditions in the horizontal direction, we obtain Cn ×Lm
where Cn is the cycle with n vertices.

What properties of G, if any, did we use in our proof
of (3)? Suppose r is the topmost even-numbered layer
which is not fully occupied. Choosing the “leftmost”
empty site (v, r) in this layer can be replaced by choosing
the first empty site v in an arbitrary fixed ordering of
the vertices of G. When we defined σ′ by flipping the
site (v, r − 1) above this empty site, we claimed that this
cannot disrupt the way the spanning path in σ from the
bottom of the lattice first arrives at layer r − 1, since that
path must go through occupied sites (u, r) and (u, r − 1)
for some u , v. As long as G is connected, we can then
reach any vertex in the fully occupied layer r − 2, and
from there reach the top of the lattice where r = 1.

Thus for any connected graph G, we have

RG×Lm (−1, 1) = (−1)s(n,m) , (4)

where n denotes the number of vertices of G and where
we define a spanning configuration as one with a path
of occupied sites from the top layer G × {1} to the bot-
tom layer G × {m} of the lattice. This includes the case
where G is the n1 × · · · × nd−1 hypercubic lattice and
n = n1n2 · · · nd−1, with any boundary conditions (open,
cylindrical, toroidal, etc.). Thus (4) holds for the d-
dimensional hypercubic lattice with any boundary con-
ditions that are open in the vertical direction nd = m. It
also includes, for instance, the hexagonal crystal lattice
in three dimensions where G is a triangular lattice.

GRAPH STACKS

The graph product G × Lm consists of m identical lay-
ers, each of which is a copy of G. But in our proof
of (3) we did not assume that the layers are identi-
cal. Hence (4) holds in an even more general setting,
where the layers G1,G2, . . . ,Gm are arbitrary connected
graphs, each with n vertices labeled 1, . . . ,n arbitrarily.
The edges

(
(u, r), (v, r)

)
within each layer r coincide with

the edges (u, v) of Gr, and the edges between layers are(
(v, r), (v, r ± 1)

)
for all 1 ≤ v ≤ n.

Such graphs have been considered in the study of dy-
namic networks, e.g. [10, 11]. Since there is no concept
of time here, we prefer to call this construction a graph
stack and notate it [G1,G2, . . . ,Gm]. We again define a
spanning configuration as one with a path from the top
layer to the bottom layer. Then

R[G1,...,Gm](−1, 1) = (−1)s(n,m) . (5)

This seems to be the most general case for which (3)
holds. Physically, it would hold, for instance, if each
layer is a connected subgraph of some (d−1)-lattice (per-
haps with some edges removed by dilution) or if each
layer has a different lattice structure entirely.

MATCHING LATTICES

For lattices outside the class described in the previous
section, our method to compute R(−1, 1) does not work.
Yet for some two-dimensional lattices we can get at least
partial results. For that we need the idea of the matching
graph. A pair of graphs (G, Ĝ) on the same vertex set is
called a matching pair if both G and Ĝ can be derived
from an underlying planar graph H in the following way.
Let F be the set of all faces of H. Then for some subset
U ⊆ F, define G (resp. Ĝ) as a copy of H with additional
edges such that each face in U (resp. F \ U) becomes
a clique, i.e., a fully connected graph. Note that this
definition is symmetric, so that (G, Ĝ) is a matching pair
if and only if (Ĝ,G) is.

For example, by taking H to be the square lattice and
U = ∅, we see that if G is the simple square lattice then
its matching graph Ĝ is the square lattice with nearest
and next-nearest neighbors (the Moore neighborhood).
Similarly, the triangular lattice is self-matching: we can
take G, Ĝ, and H all to be the triangular lattice, since its
faces are already cliques.

The crucial property of a matching pair of lattices is
that a configuration with k occupied sites in an n × m
lattice G spans the m-direction if and only if the com-
plementary configuration consisting of the nm−k empty
sites does not span the n-direction in the matching lattice
Ĝ [8]. In other words, in each configuration, either the k
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occupied sites span in the m direction of G, or the nm− k
empty sites span the n direction on Ĝ:

An,m(k) + Âm,n(mn − k) =

(
nm
k

)
, (6)

where Âm,n(k) denotes the number of spanning configu-
rations on Ĝ. Multiplying this equation by pkqnm−k and
summing over k provides us with

Rn,m(p, q) + R̂m,n(q, p) = (p + q)nm , (7)

where R and R̂ are the generating functions (1) for span-
ning configurations in G and Ĝ respectively. Along with
the general relation

Rn,m(p, q) =

(
q
p

)nm

Rn,m(q−1, p−1) , (8)

which also also holds for R̂, we can then write

Rn,m(p, q) +

(
q
p

)nm

R̂m,n(p−1, q−1) = (p + q)nm , (9)

and in particular

Rn,m(−1, 1) + (−1)nmR̂m,n(−1, 1) = 0 . (10)

Now for self-matching lattices like the triangular lat-
tice, we can take off the hat to get

R4n,m(−1, 1) + (−1)nmR4m,n(−1, 1) = 0 . (11)

This tells us that if m = n and mn is even, the balance be-
tween even and odd spanning configurations is perfect,

R4n,n(−1, 1) = 0 (n even). (12)

This pattern is visible in Table II, where the diagonal en-
tries with even n are zero. For other values of mn, we only
have the symmetry R4n,m(−1, 1) = −(−1)nmR4m,n(−1, 1).
This also shows in Tab. II, but implies no constraint on
the number of configurations.

If, on the other hand, we know Rn,m(−1, 1) for a lattice
G, we can use (10) to compute the corresponding func-
tion for the matching lattice. Our results on the square
lattice imply that for the matching lattice with the Moore
neighborhood, we have

R̂n,m(−1, 1) = −(−1)nm+s(m,n) , (13)

which also implies that the total number of spanning
configurations is odd for this lattice.

Although there is no simple pattern in R4n.m(−1, 1),
there appears to be an interesting pattern in the par-
ity of the total number of spanning configurations, i.e.,
R4n.m(1, 1). Table III shows this pattern for n,m ≤ 10. For
n,m > 1 it appears that

R4n,m(1, 1) mod 2 =

0 if n −m = 0 mod 3,
1 otherwise.

(14)

m
n

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1
2 1 0 1 1 0 1 1 0 1 1
3 1 1 0 1 1 0 1 1 0 1
4 1 1 1 0 1 1 0 1 1 0
5 1 0 1 1 0 1 1 0 1 1
6 1 1 0 1 1 0 1 1 0 1
7 1 1 1 0 1 1 0 1 1 0
8 1 0 1 1 0 1 1 0 1 1
9 1 1 0 1 1 0 1 1 0 1

10 1 1 1 0 1 1 0 1 1 0

Table III. Total number of spanning configurations mod 2 for
the triangular lattice with open boundary conditions.

Proving this equation would require a different approach
than the one used in this paper, but the self-matching
property of the trangular lattice gives some information.
Since the total number of spanning configurations is
given by Rn,m(1, 1), we can use (10) and the self-matching
property to get

R4n,m(1, 1) + R4m,n(1, 1) = 2nm . (15)

This tells us, that for n = m exactly half of the 2n2

configurations are spanning, and that the parity matrix
R4n,m(1, 1) mod 2 is symmetric. This is not sufficient to
prove (14). We leave this as an open question.

CONCLUSIONS

In the theory of computational complexity [12], count-
ing problems—specifically, counting solutions to a prob-
lem where each solution can be verified in polynomial
time—constitute the complexity class #P. Computing the
coefficients of the generating function RG(p, q) for a gen-
eral graph G falls into this class. For general graphs, the
generating function RG(p, q) is also known as the relia-
bility polynomial, and its computation has been shown
to be #P-complete [13], meaning that it is among the
hardest counting problems in this class. As a result, we
believe that any algorithm needs to perform some kind
of explicit enumeration, and therefore requires exponen-
tial time. This is true even when G is restricted to planar
graphs with bounded degree [14].

Computing a generating function like RG(p, q) at arbi-
trary values of p and q is just as hard as computing its
coefficients, since we can recover its coefficients by in-
terpolation. However, many generating functions that
are #P-complete to compute in general can be efficiently
computed at specific points, such as the Tutte polyno-
mial [15]. Similarly, computing the parity of a counting
problem may or may not be difficult. The permanent
of a matrix with {0, 1} entries is #P-complete [16], but
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its parity is easy since the permanent and determinant
are equivalent modulo 2. On the other hand, solving
general counting problems mod 2 is probably very dif-
ficult, since a polynomial-time algorithm with access to
an oracle for such problems can solve any problem in the
polynomial hierarchy, including problems well beyond
NP-completeness [17].

In this contribution we have shown that for a large
class of lattices we can compute RG(−1, 1), i.e., the dif-
ference between the number of spanning configurations
with an even or odd number of occupied sites. In par-
ticular, we have shown that these sets of configurations
are almost perfectly balanced. In addition to implying
that the parity of the total number of spanning configu-
rations is odd, this almost-perfect balance can be used as
a sanity check for enumeration algorithms that compute
the numbers An,m(k) for small values on n and m.

We note that since our preprint appeared, alternate
proofs were given by Appert-Rolland and Hilhorst [18]
that the number of spanning configurations is odd
(though without the symmetry between odd and even
k) and by Karzes using a transfer matrix approach (un-
published).
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