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An important result in classical stochastic thermodynamics is the work fluctuation–dissipation relation (FDR),
which states that the dissipated work done along a slow process is proportional to the resulting work fluctuations.
Here we show that slowly driven quantum systems violate this FDR whenever quantum coherence is generated
along the protocol, and derive a quantum generalisation of the work FDR. The additional quantum terms in
the FDR are found to lead to a non-Gaussian work distribution. Fundamentally, our result shows that quantum
fluctuations prohibit finding slow protocols that minimise both dissipation and fluctuations simultaneously, in
contrast to classical slow processes. Instead, we develop a quantum geometric framework to find processes with
an optimal trade-off between the two quantities.

Thermodynamics traditionally deals with macroscopic sys-
tems at thermal equilibrium, and its laws relate averages of
quantities such as work and heat. When bringing the theory
to the microscale, fluctuations become significant and can no
longer be neglected with respect to average quantities. As a
consequence, a stochastic description of thermodynamic pro-
cesses is needed, which has triggered enormous attention to
the understanding of work (and heat) fluctuations [1–4]. In
the regime of slow but finite-time classical processes, work
fluctuations are governed by a single relation, known as the
work fluctuation-dissipation-relation (FDR) [5–8]:

Wdiss =
1
2

βσ
2
w. (1)

Here, σ2
w≡〈w2〉−〈w〉2 is the variance of the work distribution

P(w) and Wdiss ≡ 〈w〉−∆F ≥ 0 the average dissipated work
along the protocol, i.e. the difference between average work
done and the change of equilibrium free energy ∆F , which is
always non-negative due to the second law, and β = 1/kBT
with T the inverse temperature of the environment. The work
FDR (1) is one of the pillars of classical stochastic thermo-
dynamics; it shows that near equilibrium work fluctuations
are responsible for dissipation, and conversely that any opti-
mal slow process that minimises dissipation will subsequently
minimise the fluctuations [9, 10]. For many slow classical pro-
cesses the work distribution P(w) is Gaussian [11–15], and if
the process also fulfils Jarzynski’s equality then this immedi-
ately implies Eq. (1) [8].

For quantum systems, developing a definition of work and
understanding how quantum effects influence its statistics has
raised much attention recently [16–26]. Previous studies on
the non-classicality of work distributions have considered
the emergence of quasiprobabilities due to weak measure-
ment [27–29], contextuality [30], and violations of macrore-
alism [31, 32]. Despite the wealth of research on this topic, a
quantum generalisation of (1) has not been addressed.
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Based initially on the Two-Projective-Measurement (TPM)
distribution P(w) [1, 16, 17], in this article we derive a quan-
tum work FDR and find that it differs from (1) through an ad-
ditional contribution arising due to quantum fluctuations gen-
erated along the protocol. This extra term is positive-definite
implying that slow quantum processes are governed by the
inequality Wdiss ≤ βσ2

w/2, with equality obtained when no
coherences in energy are created during the dynamics. We
further demonstrate that the extra quantum term in the FDR
leads to a non-Gaussian P(w), and show that the same quan-
tum FDR is also valid for work distributions accessed from
weak measurements of the system.

While quantum work fluctuations are of fundamental inter-
est, understanding their behaviour also provides a method for
minimising them in practical implementations. Indeed, the
design of reliable and minimally-dissipative thermodynamic
engines is of utmost importance in quantum thermodynamics.
In the regime of slow processes, the minimisation of dissi-
pation can be obtained using techniques from differential ge-
ometry: one can equip the thermodynamic state space with
a Riemannian metric [33, 34], and optimal protocols can be
found by calculating the associated geodesics [9, 10, 35–40].
Here, we show that the quantum work fluctuations can also
be related to a Riemannian metric. However, due to quantum
modifications this new metric only coincides with the metric
responsible for minimising dissipation in the classical com-
mutative regime. While this result rules out protocols that
simultaneously minimise both Wdiss and σw for quantum co-
herent processes, our framework can be used to find optimal
trade-offs between dissipation and fluctuations.

These results are derived under three main assumptions:
(i) the coupling between system and bath is weak, (ii) the
system reaches thermal equilibrium when interacting with the
bath, (iii) the driving is slow, so that we can expand the magni-
tudes of interest in the driving velocity and keep only leading
terms. Under these assumptions, we now derive a quantum
version of the FDR in Eq. (1).

The quantum work FDR. We study the thermodynamics
of an open quantum system S coupled to a thermal bath
B with total Hamiltonian HSB(t) = HS(t) + HB +VSB, where
HS(t) = HS(t)⊗ IB is the driven system Hamiltonian and VSB
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a small but finite coupling Hamiltonian. We take a finite-
time interval t ∈ [0,τ] and consider processes where the
two system Hamiltonian endpoints are fixed, HS(0) = H0
and HS(τ) = Hτ . We assume that the initial density ma-
trix of S and B is a product ρSB(0) = πS(0)⊗ πB(0) where
πS(0) = e−βHS(0)/ZS(0) and πB = e−βHB/ZB are the respec-
tive Gibbs states for the bare system and bath. The compound
system evolves as ρSB(t) = U(t)ρSB(0)U†(t) with the time-
ordered exponential U(t) =

←−
T exp

(
− (i/h̄)

∫ t
0 dt ′ HSB(t ′)

)
.

Work is required to perform U(t), and because only the sys-
tem Hamiltonian changes in time while coupling is weak,
this work can be associated with work on the system alone
[17]. The work statistics can be defined via the TPM scheme,
where a projective energy measurement of the total Hamil-
tonian is performed at the beginning, HSB(0), and the end,
HSB(τ), of the process, with the energy differences mea-
sured identified as the work values w. From the statistics,
the work distribution can then be constructed and becomes
P(w) = 1

2π

∫
dλ e−iλw G(λ ) with a moment generating func-

tion G(λ ) = TrSB

(
U†(τ)eiλHSB(τ)U(τ)e−iλHSB(0)ρSB(0)

)
[1,

16, 17], which directly gives the work moments via 〈wk〉 =
(−i)k(dk/dλ k)G(λ )

∣∣
λ=0. While in the following we will use

the TPM work distribution to establish the quantum FDR, we
show in Appendix C that our results are also valid for alterna-
tive work distributions based on weak measurements [27–29].

From now on we shall use the more compact notation
Xt ≡ XS(t), with X = ρ,H,π and denote Tr(.) as the trace
over the system degrees of freedom. In general, the re-
duced dynamics of the system can be written as ρ̇t =
− i

h̄ TrB

(
[HSB(t),ρSB(t)]

)
= Lt [ρt ]. Here, we will assume that

the system follows an adiabatic Markovian master equation
with a unique instantaneous steady state given by the ther-
mal state at each t ∈ [0,τ]: Lt [πt ] = 0, with πt = e−βHt/Zt
(a precise form of Lt [ρt ] is presented in Appendix D). This
is well–justified whenever the bath dynamics are fast com-
pared to the driving rate of the system Hamiltonian [41, 42],
and the coupling between S and B is weak enough to sat-
isfy the Born-Markov approximation and the rotating wave
approximation [43]. Importantly, under these assumptions
the TPM statistics can be determined by unravelling the mas-
ter equation in terms of quantum jump trajectories [44–46].
These trajectories can then be accessed via local measure-
ments of a quantum detector [47], circumventing the need
to perform global energy measurements. Under these as-
sumptions, we show in Appendix A that the work fluctuations
σ2

w ≡ 〈w2〉−〈w〉2 are given by

σ
2
w = 2

∫
τ

0
dt1
∫ t1

0
dt2 Tr

(
Ḣt1
←−
P (t1, t2)

[
Sρt2

(Ḣt2)
])

, (2)

where
←−
P (t1, t2) =

←−
T exp

(∫ t1
t2 dν Lν

)
is the propagator for

the Lindbladian, and we have introduced the linear mapping

Sρ(A) :=
1
2
{ρ,∆ρ A}, (3)

with ∆ρ A = A−Tr(Aρ) and {,} denoting the anticommuta-
tor. We now assume that the total time τ of the process is large

with respect to the time scale(s) of thermalisation, which are
encoded in Lt . Since the two endpoints of the trajectory are
fixed at H0 and Hτ , one has Ḣt ∝ τ−1. In this case, we can
expand the relevant expressions in terms of τ−1 and keep the
leading orders, which we refer to as the slow driving regime.
This assumption allows us to further simplify Eq. (2) in Ap-
pendix B, using techniques similar to the ones developed in
[48] for classical systems. To first order in τ−1 the work fluc-
tuations are

σ
2
w '−2

∫
τ

0
dt Tr

(
Ḣt L

+
t
[
Sπt (Ḣt)

])
. (4)

Note that the integrand is proportional to τ−2, and so for the
whole integral σ2

w ∝ τ−1 as desired. In Eq. (4), we have intro-
duced the so-called Drazin inverse L +

t of the Lindblad oper-
ator Lt [40, 49]. This inverse is defined as

L +
t [A] :=

∫
∞

0
dν eνLt

[
πt Tr(A)−A

]
, (5)

and satisfies three conditions [40]: (i) commutation with
the Lindbladian, i.e. LtL

+
t [A] = L +

t Lt [A] = A− πtTr(A),
(ii) invariance of the thermal state, i.e. L +

t [πt ] = 0, and
(iii) tracelessness, i.e. Tr

(
L +

t [A]
)
= 0.

An expression similar to Eq. (4) describes the dissipated
work, Wdiss, in slow quantum processes [40, 50]

Wdiss =−β

∫
τ

0
dt Tr

(
Ḣt L

+
t
[
Jπt (Ḣt)

])
. (6)

Note, that in place of Sπt in Eq. (4) the map Jπt appears, with

Jρ(A) :=
∫ 1

0
da ρ

a
∆ρ A ρ

1−a. (7)

In the special case that A commutes with ρ the maps Sρ(A)
and Jρ(A) both reduce to Sρ(A) = ρ ∆ρ A = Jρ(A).

Taking the expressions for work fluctuations, σ2
w, and the

dissipated work, Wdiss, together, we obtain the quantum work
FDR:

1
2

βσ
2
w =Wdiss +Qw, (8)

where Qw = β
∫

τ

0 dt Tr
(
Ḣt L +

t
[
(Jπt −Sπt )(Ḣt)

])
is a quan-

tum correction coming from the difference between the maps
Sρ(A) and Jρ(A).

In Appendix D we show that Qw ≥ 0, with equality if and
only if [Ḣt ,Ht ] = 0 for β > 0 and ∀t ∈ [0,τ]. This implies
that for slow quantum processes with [Ht , Ḣt ] 6= 0 the classical
FDR in Eq. (1) breaks down and the work fluctuations are in
fact greater than dissipation. In general, one has an inequality:

Wdiss ≤
1
2

β σ
2
w. (9)

We can then interpret the quantum work FDR (8) as follows:
during a slow process where the state remains close to a ther-
mal state πt , the work fluctuations βσ2

w/2 can be divided into
two positive contributions: a thermal contribution Wdiss, which
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arises from the thermal fluctuations in πt , and a purely quan-
tum contribution Qw, which appears whenever quantum fluc-
tuations are created in the dynamics as [πt , Ḣt ] 6= 0.

Let us rewrite Qw = β
∫

τ

0 dtIt(πt , Ḣt) where we have
introduce the dynamical skew information It(πt ,A) :=
Tr
(
A L +

t [(Jπt −Sπt )(A)]
)

for an arbitrary observable A. To
further elaborate the idea that Qw measures the quantum work
fluctuations, for now suppose S evolves under a perfectly ther-
malising map with a single time-scale 1/Γ, i.e. the Lindbla-
dian satisfies

Lt [ρt ] = (πt −ρt)Γ, (10)

which has the Drazin inverse L +
t (.) = (Tr(.)πt − I(.))/Γ.

In this case, It(πt ,A) becomes proportional to the av-
erage Wigner-Yanase-Dyson skew information [51–53]:
It(πt ,A) =− 1

2Γ

∫ 1
0 da Tr

(
[A,πa] [A,π1−a]

)
which can be un-

derstood as a measure of quantum uncertainty in the observ-
able A [54]: it is positive and vanishes iff [A,πt ] = 0, re-
duces to the usual variance for pure πt = |ψ〉〈ψ|, and de-
creases under classical mixing. For more general Lindbladi-
ans, It(πt ,A) also takes into account the presence of differ-
ent timescales of thermalisation through the additional depen-
dence on L +

t . Summarising, in Eq. (8) we can interpret Qw as
a measure of the time-integrated quantum fluctuations in the
power Ḣt .

Non-Gaussianity of the work distribution. Here we show
that these quantum coherences necessarily lead to a non-
Gaussian shape of the TPM work distribution P(w). For
this P(w) the Jarzynski equality holds [17], which relates the
change in equilibrium free energy to the cumulants of work
done on the system that are computed from P(w):

∆F =−β
−1 ln〈e−βw〉=

∞

∑
k=1

(−β )k−1

k!
κ
(k)
w . (11)

Here κ
(k)
w are the cumulants of work, with κ

(1)
w = 〈w〉 and

κ
(2)
w = σ2

w. After rearranging terms in (11) and combining
this with the quantum FDR (8), we find

∞

∑
k=3

(−β )k−1

k!
κ
(k)
w = Qw ≥ 0. (12)

In fact, as we have seen, Qw vanishes iff [Ḣt ,Ht ] = 0 ∀t ∈
[0,τ]. Since a Gaussian work distribution has zero cumu-
lants for k ≥ 3, we conclude that P(w) necessarily becomes
non-Gaussian whenever the process generates coherences of
the power operator with respect to the instantaneous Hamil-
tonian. This contrasts with the classical expectation that slow
processes lead to Gaussian work distributions [7, 11]. The
equality (12) further demonstrates that measuring the work
cumulants can provide a direct witness of quantum fluctua-
tions in power.

Thermodynamic geometry and optimal paths. Now that we
have established a relationship between work dissipation and
fluctuations, we are in a position to determine optimal proto-
cols. In order to find protocols with minimal fluctuations, one
can take a geometric approach similar to [9, 10, 40].

Considering a decomposition of the system Hamiltonian
of the form Ht = X0 +~λt · ~X , where ~λt = (λ1(t),λ2(t), ...)
is the vector of scalar controllable parameters and ~X =

∂Ht/∂~λt = (X1,X2, ...) are the corresponding generalised con-
jugate forces. Then, Eq. (4) can be recast in the form σ2

w =

2
β

∫
τ

0 dt
[

d~λt
dt

]T
Λ(~λt)

[
d~λt
dt

]
, where Λ(~λt) has elements

Λi j(~λt) :=−β

2
Tr
(
Xi L +

t [Sπt (X j)]+X j L +
t [Sπt (Xi)]

)
. (13)

It follows that since the rate of dissipated work and dynam-
ical skew information are both positive, Λ(~λt) is a positive-
definite matrix. Since Λ(~λt) is also symmetric and depends
smoothly on πt , it induces a Riemannian metric on the space
of quantum thermal states [55]. Differential geometry then
provides an efficient and systematic approach to find optimal
protocols by solving Euler-Lagrange equations for the func-
tional σ2

w of the curve~λt . Curves of minimal fluctuations are
identified as geodesics of constant velocity.

The work–fluctuation metric Λ(~λt) given in Eq. (13) should
be compared to the work–dissipation metric ξ(~λt), for which

Wdiss =
∫

τ

0 dt
[ d~λt

dt

]T
ξ(~λt)

[ d~λt
dt

]
, with elements [40]

ξi j(~λt) :=−β

2
Tr
(
Xi L +

t [Jπt (X j)]+X j L +
t [Jπt (Xi)]

)
. (14)

The two metrics Λ(~λt) and ξ(~λt) coincide whenever the con-
jugate forces commute ie. [Xi,X0] = [Xi,X j] = 0 ∀i, j. In this
special case both metrics reduce to the classical Fisher-Rao
metric over the space of thermal states, multiplied with kBT
and an integral relaxation time related to the open system dy-
namics [10].

In general, the fluctuation and dissipation metrics differ and
hence their corresponding geodesics will no longer coincide,
in contrast to slow processes in classical thermodynamics. In
other words, for quantum processes, any slow protocol ~λ opt

t
that minimises dissipation will have non-minimal fluctuations,
and vice versa. To interpolate between these two extremes,
one can resort to minimising the objective function

Cα := α σ̃
2
w +(1−α)Wdiss for α ∈ [0,1], (15)

where α weights the relative importance of the fluctuations
versus dissipation and σ̃2

w = 1
2 βσ2

w. The family of met-
rics minimising Cα for weights α is just the convex sum
gα(~λt) = α Λ(~λt) + (1− α)ξ(~λt). In Appendix E we use
Euler-Lagrange methods to find the optimal protocol λ

opt
t (α)

that minimises Cα when λt is a one-dimensional control pa-
rameter with Ht = X0 + λtX . The optimal velocity takes
the form λ̇

opt
t (α)∝

√
ξ (λt)+α βIt(πt ,X) which clearly de-

pends on α due to the presence of quantum coherence. This
contrasts with the classical case [X0,X ] = 0 where the optimal
protocol can be obtained for any α by driving the system at a
constant dissipation rate [10].

Example. Let us illustrate our results with a slowly driven
harmonic oscillator, Ht = h̄ωt

(
a†

ωt aωt +1/2
)

, connected to a
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FIG. 1. (a) Dissipated work, Wdiss, and work fluctuations, 1
2 β σ2

w,
as a function of initial state inverse temperature β for the harmonic
oscillator example. The plots are for a protocol in which the oscil-
lator frequency ωt is increased linearly in time from ω0 = 0.1ω̃ to
ω1 = 10ω̃ for a fixed reference frequency ω̃ . (b) Plot of the met-
ric tensors of fluctuations (Λ), dissipation (ξ ) and of their difference
(Λ−ξ ), for the harmonic oscillator example as a function of inverse
temperature β at a given energy gap h̄ω (see Appendix F).

perfectly-thermalising bath described by the master equation
Eq. (10). Here ωt is the time-dependent frequency of the os-
cillator, and aωt and a†

ωt are the frequency-dependent creation
and annihilation operators. Taking the time-derivative yields
the power operator Ḣt = h̄ω̇t(Ht/h̄ωt + ((a†

ωt )
2 + a2

ωt )/2),
which does not commute with the instantaneous Hamiltonian
Ht , i.e. [Ht , Ḣt ] 6= 0. In Fig. 1(a), we compare the expres-
sions for Wdiss and βσ2

w/2 for a slow linear ramp of ωt , and
it can be seen that the curves differ substantially at low tem-
peratures (i.e. high β ), where quantum fluctuations become
dominant, and become closer for higher temperatures, where
thermal fluctuations dominate and classical behaviour is re-
covered. The corresponding metrics Λ(ωt) and ξ (ωt) along
with their difference, Λ(ωt)−ξ (ωt) = βIt(πt ,X), are shown
in Fig. 1(b) as a function of inverse temperature. As expected,
this difference vanishes in the high temperature limit (β → 0).
In the low temperature regime thermal fluctuations given by
the dissipation metric ξ (ωt) decay, while quantum coherences
contribute more significantly to the total fluctuations in power
that are given by Λ(ωt). The details of all these calculations
are provided in Appendix F.

Turning to optimisation, we now use the metric gα(ωt) =
αΛ(ωt)+(1−α)ξ (ωt) associated with Eq. (15) to construct
geodesics that interpolate between minimally dissipating and
minimally fluctuating protocols (see Appendix F). So-called
Pareto fronts can be used to bound the region of allowed
protocols [56]. This is illustrated in Fig. 2, where Pareto
front curves indicate the trade-off between minimal fluctua-
tion

(
βσ2

w/2
)

and minimal dissipation (Wdiss) for various val-
ues of β . Each curve is obtained by evaluating βσ2

w/2 and
Wdiss for the geodesics minimising Cα for all values α ∈ [0,1].
If the classical FDR would hold, each curve would collapse
into a single point along the diagonal line βσ2

w/2 =Wdiss. The
quantum correction moves each Pareto front above this line
and expands it from a single point to a curve, parametrised by
α . As expected, this effect is most significant at low tempera-
tures where quantum fluctuations dominate.

Conclusions: In this article, we have studied the statistics of
work in slowly driven open quantum systems interacting with
a thermal environment. We have derived a quantum FDR for

FIG. 2. Pareto fronts limiting the accessible region of fluctuations
1
2 βσ2

w and dissipation Wdiss for the harmonic oscillator example over
all possible protocols {ωt} between the end points ω0 = 0.1ω̃ to
ω1 = 10ω̃ for a fixed reference frequency ω̃ . Curves are obtained by
varying the weight α ∈ [0,1], and for each α choosing the protocol to
follow the geodesic that minimises Cα . Each curve is for a specific
inverse temperature β = 2h̄ω̃ (blue), β = 1h̄ω̃ (yellow), β = 0.7h̄ω̃

(green), β = 0.6h̄ω̃ (red), β = 0.5h̄ω̃ (purple), β = 0.4h̄ω̃ (brown),
and β = 0.3h̄ω̃ (light blue). The blue shaded region denotes the sepa-
ration between the quantum optimal protocols (Pareto fronts) and the
classical optimal protocols (diagonal) for varying β . Inset: Magni-
fied Pareto front for β = h̄ω̃ and including points for suboptimal pro-
tocols, illustrating the accessible part of the fluctuation-dissipation
plane.

work as shown in Eq. (8), which generalises the well-known
classical FDR given by Eq. (1). This result implies that when-
ever quantum coherence is generated during the dynamics of
a slow protocol, then Wdiss <

1
2 β σ2

w, which is a genuinely
quantum effect. Let us briefly comment on the generality of
our results. While (8) has been derived using the TPM ap-
proach with thermal initial conditions, we prove in Appendix
C that (8) holds more generally for arbitrary initial states us-
ing alternative definitions of work based on weak measure-
ments [22, 57–62]. This follows directly because these mea-
surement schemes give rise to the same work average and vari-
ance. The validity of the quantum FDR for various work def-
initions highlights that the quantum effects captured by Qw
stem from the coherent dynamics of the protocol, rather than
arise as a result of measurement disturbance or a particular
choice of work definition (see discussion in Appendix C).

It is also interesting to discuss how breaking any of the three
main assumptions used to derive the quantum FDR –namely
(i) slow driving, (ii) thermalisation, and (iii) weak coupling–
can affect it. Both (i) and (ii) appear crucial: in Appendix H
we compare Wdiss and σ2

w for a spin in contact with a bosonic
bath and, while we verify the validity of Eq. (8) for sufficiently
slow driving, we do find violations of the FDR for faster driv-
ing. Regarding assumption (ii), one can demonstrate that the
quantum FDR can break down if the system is not close to
thermal equilibrium even if the dynamics are slow, as shown
in [63] for closed unitary evolutions. On the other hand, we
believe that the quantum FDR can remain valid away from the
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weak coupling regime (i.e. if (iii) is broken): a step towards
proving this hypothesis is done in Appendix G. By using a a
discrete model of quasi-isothermal processes [64, 65], we de-
rive an analogous quantum FDR for a system strongly coupled
to a thermal bath.

The quantum FDR also implies that it is fundamentally
impossible to simultaneously minimise dissipation and fluc-
tuations in slow coherent quantum processes. In the sec-
ond part of the paper we have derived a family of metrics
whose geodesics interpolate between minimally-dissipative
and minimally-fluctuating thermodynamic protocols, and our
results unveil a new geometric structure within quantum ther-
modynamics. A promising platform to observe these effects
experimentally are quantum dots [66–68] and superconduct-
ing qubits [69, 70], where slowly driven non-commuting pro-
tocols appear as a realistic possibility [71] and proposals for

observing TPM work statistics using a calorimeter have been
made [47]. An interesting future direction is to extend the
FDR to many-body closed systems [63, 72, 73], and to in-
vestigate how these genuinely quantum effects can modify
the thermodynamic uncertainty relations in non-equilibrium
steady states [74–77] and FDR’s in other contexts such as
quantum transport [78].
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