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We demonstrate quantum many-body state reconstruction from experimental data generated by
a programmable quantum simulator, by means of a neural network model incorporating known
experimental errors. Specifically, we extract restricted Boltzmann machine (RBM) wavefunctions
from data produced by a Rydberg quantum simulator with eight and nine atoms in a single mea-
surement basis, and apply a novel regularization technique to mitigate the effects of measurement
errors in the training data. Reconstructions of modest complexity are able to capture one- and
two-body observables not accessible to experimentalists, as well as more sophisticated observables
such as the Rényi mutual information. Our results open the door to integration of machine learning
architectures with intermediate-scale quantum hardware.

Quantum state tomography [1] is an important tool for
reconstructing generic quantum states, but traditional
techniques require a number of measurements scaling
exponentially in the system size [2]. In certain cases,
methods that exploit particular entanglement or sym-
metry properties [3–7] allow for more efficient tomogra-
phy of states prepared in experiments. However, such
approaches still involve explicit reconstruction of local
density operators [3, 8], incurring a significant compu-
tational overhead in the estimation of nontrivial observ-
ables from experimental data – especially in the presence
of measurement errors introduced by realistic experimen-
tal hardware. In order to facilitate the characterization of
near-term quantum hardware [9], a state reconstruction
method which can efficiently extract physical quantities
of interest directly from noisy experimental datasets is
highly desirable.

Neural network-based machine learning has recently
emerged as a powerful technique for learning compact
representations of high-dimensional data [10–12]. In ex-
perimental quantum science, these tools have already
been applied profitably to the classification of experimen-
tal snapshots [13, 14] and qubit readout [15]. The same
data-driven approach can be applied to tomographic
tasks. Recent theoretical work has demonstrated that a
generative model called a restricted Boltzmann machine
(RBM) is capable of accurate reconstruction of quantum
states and observables directly from synthetic datasets
generated by numerical algorithms [16].

In this Letter, we present a proof-of-principle demon-
stration of neural network quantum state reconstruction
from experimental data. Our experimental system con-
sists of a one-dimensional array of strongly interacting

Rydberg atoms [17, 18]. Leveraging the high purity
and approximate positivity of the experimental state, we
train RBMs using single measurement basis data con-
sisting of bit-strings obtained via repeated, simultaneous
single-shot readout of the ground and Rydberg popu-
lations of all atoms. The RBMs learn a higher-fidelity
and more efficient representation of the underlying bit-
string probability distributions than standard inference
from the limited size training dataset. This approach
also enables us to implement an efficient procedure for de-
noising the full probability distribution from bit-flip-type
measurement errors, by incorporating a dedicated “noise
layer” in the network architecture. We test the validity
of our approach by comparing predictions of the trained
RBMs with numerical results for observables that are off-
diagonal in the measurement basis, including the quan-
tum mutual information. These results demonstrate the
utility of RBMs in reconstructing approximately pure,
positive states from experimental data, and pave the
way to further integration of neural network models with
quantum hardware.

Experimental system. Our experimental ap-
proach [17, 18] involves a programmable Rydberg
atom quantum simulator, a flexible neutral-atom system
for realizing Ising-type quantum spin models [17, 19–24].
In the present experiments (Fig. 1a), a one-dimensional
array of N trapped Rubidium atoms is prepared; N = 8
atoms are used below, but we have also applied our
protocol to arrays of N = 9 atoms [25]. Each atom can
occupy a ground state |g〉 or an excited (Rydberg) state
|r〉, and two atoms excited to the Rydberg state at a
distance r interact with a van der Waals-type potential
V (r) ∝ r−6. When subjected to a uniform laser drive,
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Figure 1. Experiment and reconstruction. (a) Model of the
reconstruction process. Individual 87Rb atoms (grey circles)
are trapped in an array of optical tweezers and coupled to
a Rydberg state with Rabi frequency Ω. Site-resolved fluo-
rescence imaging provides imperfect measurement in the σ̂z

basis. Our neural network model describes the true quan-
tum state as an RBM (blue and green neurons), while the
binary data τ accessible to the experimentalist are included
as an auxiliary ‘noise’ layer (red neurons). By training on
this data, the network learns parameters λ describing the ex-
perimental quantum state, which are subsequently used to
compute observables 〈Ô〉. (b) Representation of the ordered
state at the end of the adiabatic sweep – see Eq (2). Darker
circles represent a higher probability of Rydberg excitation,
and the shading indicates quantum fluctuations localized at
bonds (3,4) and (5,6). (c) The effective laser detuning ∆ and
Rabi frequency Ω as a function of sweep time t. Circular
markers indicate the times at which the sweep was halted to
collect data. Vertical line: approximate transition to order-
ing in the finite system. The nearest-neighbor interaction is
Vnn = 30 MHz, the final detuning is 10 MHz, and the peak
Rabi frequency is 2 MHz; the total sweep time is Tev = 3.4µs.

the effective Hamiltonian of the many-body system can
be written as [17, 19, 26, 27]

Ĥ(Ω,∆) = −∆

N∑
i=1

n̂i−
Ω

2

N∑
i=1

σ̂xi +
∑
i<j

Vnn
|i− j|6

n̂in̂j , (1)

where Vnn is the interaction strength between Rydberg
atoms at adjacent sites, σ̂αi , with α = x, y, z, are the Pauli
pseudo-spin operators at site i (defined as σ̂zi = |ri〉〈ri|−
|gi〉〈gi|, σ̂xi = |ri〉〈gi| + h.c., etc), and n̂i = 1

2 (1 + σ̂zi )
projects onto the Rydberg state at site i. The parameters
Ω,∆ denote the effective Rabi frequency and detuning,
respectively, which characterize the laser drive, and can
be varied in time as Ω(t),∆(t) to drive the system into
nontrivial ordered phases [17, 26, 28, 29].

We focus on the transition into the Z2 phase [17], where
a high density of Rydberg excitations is energetically
favorable, subject to the constraint that no two adja-
cent atoms are excited. The atoms are initially pumped
into the fiducial state |g g g g g . . . 〉, coinciding with the
ground state of Hamiltonian (1) at t = 0. They then
evolve adiabatically under a “sweep” of the laser param-
eters Ω(t),∆(t) for a time Tev, with Ĥ(Ω(Tev),∆(Tev))
lying deep in the Z2 phase (Fig. 1c). For our eight-atom
system, the final Z2-ordered state at t = Tev is well ap-
proximated by the ground state of the Rydberg Hamil-
tonian with a small transverse field and short-range in-
teractions only [25]:

|ψ〉 =
1√
2
|rgrggrgr〉+ 1

2
|rgrgrggr〉+ 1

2
|rggrgrgr〉. (2)

This state exhibits quantum fluctuations on two pairs of
adjacent atoms, as indicated in Fig. 1b.

Pure state ansatz. The ground state of the Hamilto-
nian (1) has real, positive amplitudes in the occupation
number basis |σ〉 = |σ1, . . . , σN 〉 – defined as the simul-
taneous eigenstates of n̂1, . . . , n̂N – as long as Ω > 0 [30],
which can always be arranged by applying a suitable
global unitary [31]. Therefore, if the quantum state of
the simulator evolves perfectly adiabatically and with
negligible loss of purity, it is uniquely characterized by
its probability distribution p(σ) over projective measure-
ments in the |σ〉 basis, and at any time may be written
as the pure state

|ψ〉 =
∑
σ

√
p(σ)|σ〉. (3)

Of course, some loss of purity is inevitable – in our ex-
periments, due primarily to single-atom decay and de-
phasing processes [32] – and the true state is described
by a mixed density operator ρ̂. Although this pure state
approximation cannot capture all of the physics of the ex-
perimental state, it can in principle accurately describe
local subsystems, to the extent that the corresponding
reduced density operators of the true and reconstructed
states agree [25]. We adopt the pure, positive state ansatz
in all of our reconstruction efforts below.

Neural network model. While the quantum state (3)
can in principle be inferred directly from a set of raw
measurements (i.e. by inverting the measurement counts
of each configuration to estimate p(σ)), such an approach
is limited to small systems and very large datasets. In
contrast, generative models used in unsupervised machine
learning tasks can capture the structure of the distribu-
tion p(σ), generalizing beyond a limited set of training
samples. This results in a higher-fidelity reconstruction
and a model size scaling polynomially in the system size
(Fig. 2). Moreover, using a generative model rather than
direct inference from the data enables automatic correc-
tion of this distribution for known measurement errors
using a “noise layer” (see Fig. 1a and description below).
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We parametrize p(σ) with a generative model known
as an RBM [33, 34], a stochastic neural network with two
layers of binary units. The “visible” layer σ describes the
atomic states of the Rydberg chain in the occupation
number basis, while a hidden layer h captures correla-
tions between visible units. The RBM defines the follow-
ing probability distribution for the visible layer:

pλ(σ) =
1

Zλ

∑
h

e h
>Wσ+b·σ+c·h, (4)

where Zλ is a normalization constant, and the real-
valued network parameters are λ = {W , b, c}, with
W being the weights connecting the two layers and b
(c) the visible (hidden) bias vectors. We use the visi-
ble layer of the RBM to define the projective measure-
ment distribution p(σ) of the pure state (3), resulting
in an RBM wavefunction with positive amplitudes [35]:
ψλ(σ) = 〈σ|ψλ〉 =

√
pλ(σ). We have numerically veri-

fied that this RBM wavefunction can accurately describe
states relevant to our experiment, with a number of pa-
rameters scaling only quadratically in system size (Fig. 2
and [25], Sec. IV), in accordance with recent scaling stud-
ies for quantum Ising ground states [36]. We point out
that, although pure states with nontrivial phases [37, 38],
as well as mixed state models [39, 40], could be applied
using similar neural network models, measurements in
other bases would be required.

Measurement process and noise layer. Measurement
data consists of a collection of N -bit strings τ =
(τ1, . . . , τN ), with τj = 0, 1 indicating that atom j was
recorded as being in the ground |g〉 or Rydberg state
|r〉 respectively [17]. Such measurements are never per-
fect, and there are small measurement error probabili-
ties p(1|0) ∼ 1%, p(0|1) ∼ 4% [32] for an atom in the
ground state to be recorded as excited and vice-versa.
These result in experimental data τ that do not corre-
spond to projective measurements. Instead, the measure-
ment process can be described as a positive-operator val-
ued measure (POVM) [41] with measurement operators
Π̂τ =

∑
σ p(τ |σ)|σ〉〈σ|, where p(τ |σ) =

∏N
j=1 p(τj |σj)

is the probability of the experimentalist recording τ if
the atoms are prepared in the state |σ〉. The prob-
ability distribution sampled in the experiment is then
Pexp(τ ) = Tr

[
ρ̂Π̂τ

]
.

The experimental measurement process is incorpo-
rated into our model via a third binary layer, the so-
called noise layer (Fig. 1a), which represents the ob-
served POVM outcomes τ . The measurement error
rates p(τ |σ) are included as connections between the
visible and noise layers [42], by assigning a probability
p̃λ(τ ) =

∑
σ p(τ |σ)pλ(σ) to the measurement result τ .

The full three-layer network is trained to learn param-
eters λ which maximize the log-likelihood of the recorded
POVM outcomes under p̃λ(τ ). During training, the noise
layer prevents the parameters λ from fitting to spurious

Figure 2. Benchmarking RBM reconstruction. (a) Fidelity
of reconstruction. We sample synthetic datasets from states
obtained by exact time-evolution under the Hamiltonian (1)
without decoherence. The exact quantum state fidelity F be-
tween the true state ρ̂ and the reconstruction ρ̂λ = |ψλ〉〈ψλ| is
plotted as a function of detuning ∆. Training standard RBMs
on datasets without measurement noise (green dashed line),
we achieve uniformly high fidelities, demonstrating that the
RBM wavefunction ansatz is capable of representing states
relevant to our experiment. Training on datasets with mea-
surement noise with (red solid line) and without (green solid
line) noise-layer regularization shows how the modified train-
ing improves reconstruction. Inset: same data, for time-
evolution including a realistic decoherence model. (b) Model
size. Here we compare the number of parameters Np required
to specify an RBM wavefunction with N hidden units with
the size of the frequency-distribution (FD) model required to
perform direct inference (i.e. number of different configura-
tions in the dataset), for a typical Rydberg ground state, as
a function of system size N and for several dataset sizes Ns.
Note that the FD model size depends on Ns, while the RBM
size does not. For further discussion, see [25].

features in the data produced by measurement errors.
This noise layer regularization significantly improves the
fidelity between |ψλ〉 and the state ρ̂ underlying the data;
numerical tests (Fig. 2) based on Lindbladian simulation
of our experiment result in fidelities greater than 90% for
the full many-body state at the end of the sweep, even
when decoherence processes are included. All reconstruc-
tions presented below are obtained in this fashion.

Experimental reconstruction. In the experiment, at
fifteen subsequent time-steps t (Fig. 1c), the sweep is
halted and measurements τ are sampled from the state
ρ̂(t). At each time-step, a dataset of around 3,000 sam-
ples is collected and used to train a three-layer model
with 2N = 16 hidden units. After training the networks,
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Figure 3. Few-body observables. Comparison of the RBM re-
construction (squares) with the experiment results (crosses)
and the predictions from the Lindbladian master equation
(circles) [25]. In order to facilitate comparison with experi-
ment, the values reported in (a) and (b) for the RBM and
Lindbladian observables are computed including the known
measurement error rates p(0|1) = 0.04, p(1|0) = 0.01. (a)
Nearest-neighbor correlations ḡzz(1) in the z basis, spatially
averaged (see text for definition). (b) Average correlation
ḡzz(s) as a function of distance s for ∆ = 10 MHz. (c) Spatial
average x̄ of the transverse field 〈σ̂x

i 〉. (d) Nearest-neighbor
correlation 〈σ̂x

i σ̂
x
i+1〉c as a function of position i for ∆ = 10

MHz. The two peaks correspond to the bonds highlighted in
Fig. 1b.

standard sampling methods can be applied to compute
expectation values of observables, with a computational
cost scaling polynomially in the network size [25]. We
consider in particular the connected correlation functions
〈σ̂αi σ̂αj 〉c = 〈σ̂αi σ̂αj 〉 − 〈σ̂αi 〉〈σ̂αj 〉 for α = x, y, z, and their
spatial averages, ḡαα(s) = 1

N−s
∑N−s
i=1 〈σ̂αi σ̂αi+s〉c.

In Fig. 3a-b, we verify that our reconstructions learn
to represent their training sets, by examining their abil-
ity to accurately reproduce observables which are diago-
nal in the occupation number basis. The networks learn
the strong two-body correlations 〈σ̂zi σ̂zj 〉c present in the
experimental data. We compare the results of the re-
construction process to the exact solutions of a Lindblad
master equation for the full many-body evolution. Our
Lindbladian simulation predicts Rydberg excitation pro-
files in excellent agreement with experiment, but its sig-
nificantly weaker correlations suggest our model for the
sweep dynamics is partially incomplete.

Turning to experimentally inaccessible quantities
(Fig. 3c-d), the reconstructions and simulation agree
qualitatively in the temporal and spatial profiles of the
transverse field 〈σ̂xi 〉 and its two-point correlation func-
tion, although the RBMs predict somewhat larger val-

Figure 4. Rényi Mutual Information. The quantum (Rényi)
mutual information I2, defined as I2(s) = S2(ρ̂As ) + S2(ρ̂Bs )−
S2(ρ̂), where S2(ρ̂) = − logTrρ̂2 is the second-order Rényi
entropy, ρ̂ is the (mixed) state of the whole system, and
ρ̂As , ρ̂

B
s are the reduced density matrices for the subsystems

As = {1, ..., s}, Bs = {s + 1, ...N} respectively, defined by
a partitioning of the system at bond (s, s + 1). The mutual
information is plotted for a partition at bond (3,4), as a func-
tion of detuning. Inset: The mutual information I2(s) as a
function of the cut bond s for ∆ = 10 MHz.

ues in the ordered phase. Note that the distinct spa-
tial variation of the transverse field correlations, a sig-
nature of quantum fluctuations captured in the approxi-
mate state (2), is reconstructed directly from our exper-
imental data. Training on synthetic data [25] indicates
that a large portion of the disagreement between recon-
struction and simulation is due to the discrepancy be-
tween our Lindbladian model and experiment evident in
Fig. 3a-b, not the RBM model itself.

Beyond few-body observables, an important question
is whether entanglement properties are reproduced ac-
curately in reconstruction. From our RBMs, the Rényi
entropy – which requires specialized or hardware-specific
protocols to access directly in experiment [43, 44] – may
be extracted in a scalable fashion by applying a state-
replication and swap procedure virtually [37, 45]. In fact,
for pure experimental states, positive-pure ansatzes such
as the RBM wavefunction provide a lower bound on the
mutual information defined by the Rényi entropy ([46],
[47], see also [25], Sec. VIII), regardless of the sign struc-
ture of the true state. We demonstrate a reconstruction
of the mutual information defined by the Rényi entropy
in Fig. 4, finding that the RBM values are in remarkable
agreement with the results of numerical simulation. Re-
constructions on experimental states of N = 9 capture
a similar buildup in the mutual information during the
sweep predicted by Lindbladian simulation [25].

Conclusions. In this Letter, we have demonstrated
neural-network reconstruction of experimental quantum
states from data produced by a programmable Rydberg-
atom quantum simulator. By leveraging the real-positive
nature of the ground state wavefunction expected from
the effective Hamiltonian, we trained restricted Boltz-
mann machines on measurements in the occupation basis
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only. An additional noise layer was added to the stan-
dard RBM architecture to mitigate measurement errors.
Once trained, the RBM was queried to produce a variety
of observables not accessible in the original experimental
setup, including the Rényi entropy - a basis independent
measure of the quantum entanglement of the wavefunc-
tion.

Our approach can be integrated without alteration into
existing platforms where a positive wavefunction ansatz
is a valid approximation, such as Bose-Hubbard exper-
iments and some non-frustrated quantum spin simula-
tors [20, 48–50]. Access to multiple measurement bases
would allow enhanced certification of the reconstruction,
by providing direct experimental access to observables
which are informationally complete for local subsystems.
Also, with access to different bases the RBM protocol can
be easily adapted to reconstruct non-positive and com-
plex wavefunctions [37]. In this case, the reconstruction
cannot immediately accommodate the noise-layer regu-
larization. In turn, the denoising can be implemented in
any scheme where the quantum state is uniquely spec-
ified by a classical probability distribution, such as in
generative modeling of POVM measurements [40]. For
non-positive wavefunctions, identifying the minimal set
of measurement bases and the optimal protocol to collect
the statistics represents a crucial step towards reconstruc-
tion of quantum states prepared by fermionic quantum
simulators and non-equilibrium dynamics [51, 52].

In conclusion, machine learning techniques offer a
means of increasing the amount of useful information
that can be extracted from experiments, especially when
hardware constrains the quantity or quality of accessible
measurements. They can be used to offload the burden
of technically expensive – or fundamentally impossible
– measurements from experimental platforms in a noise-
resilient fashion. We expect experimentalists will profit
from deeper integration of machine learning architectures
with quantum devices.
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