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Stabilizer code quantum Hamiltonians have been introduced with the intention of physically
realizing a quantum memory because of their resilience to decoherence. In order to analyze their
finite temperature thermodynamics, we show how to generically solve their partition function using
duality techniques. By unveiling each model’s universality class and effective dimension, insights
may be gained on their finite temperature dynamics and robustness. Our technique is demonstrated
in particular on the 4D Toric Code and Haah’s Code — we find that the former falls into the 4D
Ising universality class, whereas Haah’s Code exhibits dimensional reduction and falls into the 1D

Ising universality class.

The stabilizer formalism is a powerful mathematical
framework for designing quantum error correcting codes
[1-6]. Kitaev proposed to turn a stabilizer code into an
interacting many-body system by associating a coding
space to the ground state subspace of a stabilizer code
Hamiltonian, a linear combination of elements of the sta-
bilizer group [7, 8]. Stabilizer code Hamiltonians dis-
play a gapped spectrum with a topologically quantum
ordered ground manifold and where errors, typified by fi-
nite energy excitations, become energetically unfavorable
at zero temperature. These systems are natural candi-
dates for physical realization of a robust quantum mem-
ory, a ¢-RAM or g-Hard Drive, because of their inherent
resilience to decoherence. Since Kitaev’s original pro-
posal, several stabilizer code models have been advanced
in various spatial dimensions D, including the most re-
cent fracton models [9-14].

It was emphasized long ago that the effect of tem-
perature on these memories cannot be ignored [15-17].
Finite temperature decoherence times may be affected
by effective dimensional reduction [15, 18, 19]. Specifi-
cally, the spectral degeneracy of stabilizer code models is
associated with symmetries that may involve a macro-
scopic fraction of degrees of freedom, the so-called d-
dimensional gauge-like symmetries [20, 21], 0 < d < D,
later on dubbed “subsytem” symmetries [22-25]. Dual-
ity transformations [26-28] may unveil the lower dimen-
sional classical theory isomorphic to the stabilizer code
model. Such dual theories exhibit non-analyticities (and
critical exponents associated with continuous transitions
[29]) of identical character, and therefore belong to the
same universality class. Understanding the universality
classes and dynamics of stabilizer models may aid in the
design of robust quantum memories.

The primary goal of this paper is to show how dual-
ity techniques can be utilized to exactly determine the
partition function of stabilizer code Hamiltonians. In
particular, we demonstrate how the stabilizer algebra en-
codes any non-analyticities (or lack thereof) in the ther-
modynamic free energy of the corresponding stabilizer
Hamiltonian, via the scaling of constraints on the stabi-

lizer algebra with system size. The Abelian nature of the
stabilizer group allows for a particularly simple analy-
sis: while the studied models are in principle constructed
using a large number of entangled quantum spins, the re-
sulting algebra will be shown to factor into independent
Ising algebras. Consequently, the partition function of
any CSS stabilizer code Hamiltonian [30] may be easily
analyzed using various duality techniques. The effective
dimensionality of the resulting classical models vary de-
pending on the constraints. We find that D = 2 or 3
dimensional stabilizer models are often dual to classical
Ising chains, implying the absence of phase transitions in
many stabilizer models (see Table I).

In this paper, we analyze the 4D Toric Code [§]
and Haah’s 3D Cubic Code [13, 14, 31]. These mod-
els represent two extremes of the dimensional reduction
paradigm: we will show that the 4D Toric Code (4DTC)
features no dimensional reduction and belongs to the 4D
Ising universality class. By contrast, typical odd lattice
size renditions of Haah’s 3D Cubic Code lie in the 1D
Ising universality class. The 4DTC therefore exhibits
a finite temperature phase transition with critical expo-
nents given exactly by those of mean field theory, while
Haah’s cubic code may be unstable to thermal fluctua-
tions (a phenomenon known as thermal fragility [15]) and
exhibit no finite temperature transitions.

Methodology — We will investigate thermal properties
of the above two stabilizer Hamiltonians by identifying
their classical Ising duals. The models are defined on
D-dimensional lattices A = ZP of length L in each direc-
tion with vertices v = (x,y,2,...) € A. The lattices A
are endowed with periodic boundary conditions, although
any local finite temperature properties should not de-
pend on the boundary conditions in the thermodynamic
limit. We associate with the lattice N qubits, each with
a local Hilbert space H,, = C?; the global Hilbert space
H = @,H, is of complex dimension 2V. Each qubit
belongs to a unit k-cell of the lattice: k = 0,1, and 2 rep-
resent qubits on the vertices, links, and plaquettes of the
lattice respectively. Our arguments are easily generalized
to p-qudits and U(1) models [35, 38].



Model D|d |Dual Model Universality Class
2D Toric Code (7, 15] 2 |1 |Two decoupled 1D Ising chains 1D Ising
2D Honeycomb Toric Code [19, 32]|2 |1 | Two decoupled 1D Ising chains 1D Ising
Color Codes [19, 33] 2 |1 |Two decoupled 1D Ising chains 1D Ising
3D Toric Code [15, 34] 3 |0, 1|Decoupled 1D Ising and 3D Ising models 3D Ising
X-Cube* [9, 35] 3 |1, 2|Decoupled L 1D Ising and L — 1 1D Ising-gauge|1D Ising
Haah’s Code** [13, 14, 31] 3 |2 |Two decoupled 1D Ising chains 1D Ising
4D Toric Code [8, 36] 4 |2 |Two decoupled 4D Ising models 4D Ising
Chamon’s XXYYZZ [19, 28, 37] 3|1 |Four decoupled 1D Ising chains 1D Ising

TABLE I: Universality classes of stabilizer code Hamiltonians. D is the spatial dimension of the lattice model. d is the dimension
of the gauge-like symmetries. Dualities are defined as equivalence relations between partition functions: the 3DTC, for example,
has a partition function proportional to the product of a 1D Ising and a 3D Ising partition function. While Chamon’s XXYYZZ
model is not an stabilizer code, it can also be shown by duality to exhibit dimensional reduction. Additionally, while all listed
models above are constructed using Pauli operators, very similar results may be obtained for non-Pauli models, such as those
with Z, clock operators or U(1) operators. *: While the X-Cube model’s universality class does not depend on any choice of
boundary conditions, the particular duality chosen holds for the case of cylindrical boundary conditions. **: The duality given
below for Haah’s code holds explicitly for those values of L for which the Ground State Degeneracy (GSD) is 4.

Next, we define the operators A, and B, as:

A, =[] o8, 1<r<R,
neN,

(1)

B, 1<s<58S,
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where N, and N are indexing sets used to generate R op-
erators A, and S operators By, respectively. We further
require that each A, and B, commute. The Hamiltonian
for this generic stabilizer model reads

R s
H= —aZAT—bZBS,
r=1 s=1

with coupling constants a,b > 0. All operators in (2)
commute and square to the identity 1 on H. The
partition function is then given by the following high-
temperature (8 = 1/(kpT)) series expansion:

(2)

R S
Z=Tre " =Tr | [(AC. + A,Sa) [[(1C, + B.Sy)
r=1 s=1
=2V GG T T
(3)

Here, C, = cosh(fa) and S, = sinh(Ba), with C, and S,
similarly defined. In the above, 7, (and analogously Tp)
are given by

R

[+ 4T =Tl +tt with T, = > TP, (4)

r=1 PcA

with “t.t.” denoting traceless terms and T, = tanh(Sa)
(and Ty, = tanh(Bb)). P € A (B) denotes operators A,
(Bs) multiplying to 1,
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Each P corresponds to a constraint on the stabilizer al-
gebra. The only terms contributing to the trace in (3)
are those proportional to the identity (2 = Tr[1]). The
traceless terms (t.t.) in (4) and those corresponding to 7p
cannot combine to yield the identity — by construction in
(1), there are no nontrivial constraints between A, and
B, operators. We have thus reduced the problem of solv-
ing each model’s partition function to identifying which
and how many constraints exist among A, or B, oper-
ators separately. From the partition function, we may
then compute the thermodynamic free energy density,

(6)

This means of describing the thermodynamics of spin
models is particularly effective for stabilizer Hamiltoni-
ans. The algebra of a stabilizer Hamiltonian has three
important properties: (i) each element of the stabilizer
commutes with one another; (ii) each element of the sta-
bilizer is usually composed of either entirely ¢® or o*
operators (these stabilizer codes are known as CSS codes
[30], and most stabilizer code Hamiltonians fall into this
category); (iii) each element has eigenvalues £1. This
implies that the stabilizer algebras that we investigate
factor into two classical Ising algebras. As a result, these
stabilizer Hamiltonians are dual [26-28] to classical Ising-
like Hamiltonians using bond-algebraic dualities [28].

4D Toric Code — As befits its name, the 4DTC [8, 39]
is defined on a D = 4 dimensional lattice. Qubits are
associated with all (6L%) plaquettes p. For each link ¢,
the operator Ay is defined by

Ay = Hag,

Ledp

(7)

where the above product is over the six plaquettes p
whose boundary Jp contains the link ¢. The operator



B, is defined for each three-dimensional cube as
B.= [] o (8)

The above product is over the six plaquettes contained
in the cube ¢’s boundary. The Hamiltonian Hyprc and
partition function Zyprc are as defined in (2) and (3)
respectively, and it is trivially verified that each A, and
B, commute.

We now show that the 4DTC is dual to two copies of
the 4D nearest neighbor Ising (4DI) model defined by

Hypr =—J Z SySu’s (9)
(v,v7)

in the sense that the thermodynamic free energy density
can be trivially written in terms of the 4D Ising model’s
free energy. In (9), s, is a classical spin variable at each
vertex v € A and the sum is over all nearest neighbor
pairs v,v" in A. We express the partition function of this
model via a low temperature series expansion. Starting
from the ground state of s, = +1 for all v, we consider
excited states and expand in the number of higher en-
ergy “broken bonds”; a “broken bond” corresponds to

8,8y = —1 for a nearest neighbor pair v,v’. The parti-
tion function is then given by
Zupr = 9pAL BT Z e~ 28JAc (10)
CCA

Each C represents a set of flipped spins from the cho-
sen ground state. We demand |C| < L*/2, noting that
each configuration C has a global spin-flip “symmetry
partner” A\ C with the same bond structure as C. The
ground state energy is —4L*J, and A is the number
of “broken bonds” in configuration C with 2.J being the
energy penalty for “breaking a bond”.
We begin investigating 7, by noting the constraint

I Ac=1. (11)

vedl

The above product is over the eight links containing the
vertex v. This can be verified by noting that there are
twenty four plaquettes adjacent to v (four for each pu-
v plane), and each plaquette is included by exactly two
links in (11). Higher order constraints may be found by
taking products of (11) for some subset C of vertices, and
eliminating any A, included in the product twice. Note
that each A, for a given link ¢ = {v, v’} will be included
in such a product if and only if v € C or v’ € C, so that
C and A\ C yield the same constraint (see Fig. 1).

This set of constraints suggests the following duality:
for each spin flip configuration C in the Ising low temper-
ature expansion (10), we obtain a unique identity prod-
uct in the 4DTC high temperature expansion. Moreover,
each A, operator included in such a constraint must cor-
respond exactly to a bad bond in C. This shows that the
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FIG. 1: A 2D cross section of a 4D lattice, with classical
Ising spins at each site. Each red dotted link corresponds to
a broken bond, and each blue loop is the 1D cross-section of a
3D hypersurface domain wall. In the 4D lattice, the product
of Ay over all red links and the product of B. over all blue
cubes correspond to two independent constraints.

series (10) is entirely contained within (4), with a global
prefactor and the replacement e=2#7 — T,:

1

1 4
=_Tt'z
Ta 51 4DI(2J

1 p
log T> + O(de), (12)
where the terms of order TaL3 or higher, (’)(ng), arise
due to the topology of the lattice, and are negligible to
the thermodynamic free energy.
Turning to 7T, we similarly note the constraint

I B.=1. (13)

where the product is over the eight cubes contained in
a minimal 4D hypercube h. By multiplying such con-
straints, we can generalize (13) to include products over
any closed three dimensional hypersurface; the number
of B, operators in such products is the three dimensional
hypersurface area (Fig. 1). This set of constraints also
suggests a duality to (10) via another lens. Here, instead
of placing Ising spins at each vertex of the lattice, we
imagine placing spins at the center of each hypercube
h, creating another lattice A’ a half-spacing off from A.
Whereas the A, in (11) stem from broken bonds in the
Ising model on the same lattice, each B, operator in this
duality represents a domain wall separating different spin
orientations in an Ising model on A’. The hypersurface
area of this domain wall is equal to the number of broken
bonds in the Ising configuration. From this, we see that
the same duality as (12) holds for 7, with T, replaced
with Tp. Indeed, once Z4prc has been factored as in (3),
this duality is known as a Wegner duality [27], or more
particularly as a “lattice gerbe theory” duality [40].
One might reasonably worry that the above discussion
is too cavalier: although it’s clear that each pair of spin
flip configurations C and A \ C generates a unique con-
straint via (11), how do we know that all terms of (4)



FIG. 2: Haah’s Code: the two operators of Egs. (14), (15).

below order Tgs can be found this way? Additionally,
how do we know that the subextensive contributions to
Z4pre are negligible in the free energy’s thermodynamic
limit? These questions, and analogous ones for Ty, are
addressed with a careful proof of the duality (12) in the
supplemental material.

Haah’s Code — Haah’s code is defined as follows [12,
13]: Let A be a D = 3 lattice, where we associate two
qubits with each vertex v € A. Letting ¢¥ and 7/ label
the first and second qubits respectively at each vertex,
the operator A, is then defined as in Fig. 2:

_ x, _xT_T x x
AU =0,Ty Tv—i—exTv—&-eyTv—i-ez

(14)
T xr T
Jv+ez+ey Jereerez 0v+ey+ez :
The operator B, is similarly defined as in Fig. 2:
JR——A4 z z z
BU :Tv—s-eva—&-eyTv—&-ez O'v+em+ey 15
o’ o’ o’ 7 (15)
vtegzter T vteyte T vtegteyter 'vteyteytes
As usual, [A,, By] = 0 for any two sites v and v/, and

the model’s Hamiltonian Hy,,, and partition function
Ziaan are defined as in (2) and (3), respectively. Note
that the operators A, and B, are simply reflections of
one another, so their constraints will be identical.

Haah’s code features an intricate Ground State De-
generacy (GSD) [14]: unless L is a multiple of 47 — 1 for
p > 2, GSD = 4 for odd L [13]. We will restrict our
attention to these models, as they are the most pertinent
to quantum error correction: it has been argued [14, 31]
that, for these values of L, the model demonstrates long
memory timescales at low temperatures.

While the nature of constraints in Hygaan varies wildly
for different values of L, the number of constraints (in-
cluding the trivial empty product) is always equal to
log, GSD [14]. Thus, when GSD = 4, the two indepen-
dent constraints are those present for all L,

[TAa.=1, J[B.=1 (16)
vEA vEA

These relations can easily be verified by observing that

the product of each of the eight corners of the cubic oper-
ators yields the identity. The partition function is then:

Zitaan = 225 (C§3 + 553) (C53 + 553) : (17)

Alternatively, let s; and t; be classical Ising spins (1 <
i < L3). Then, within the bond-algebraic framework of
dualities as isomorphisms [28], the mapping

Av — S8iSi+1, B, — titi+1; 1<+ < L3 (18)

with L3 + 1 = 1 similarly implies the duality of Haah’s
code to two periodic Ising chains. This duality suggests
that the finite temperature dynamics of Haah’s code are
identical to those of finite temperature classical Ising
chains, and may thus be unstable to thermal fluctuations
(i.e., exhibit “thermal fragility” [15]).

We caution that the duality (18) only holds exactly for
the case GSD = 4: although the thermodynamic limit
can be taken along an infinite sequence of L satisfying
this condition [31], each variation of constraints at differ-
ent L requires a new bond-algebraic duality. Neverthe-
less, the number of constraints never exceeds 2°(5) for
any system size, and the free energy remains analytic in
any thermodynamic limit as a result [14]. This suggests
that Haah’s Code may remain in the 1D Ising universal-
ity class along any thermodynamic limit.

Conclusions — We showed how to generically analyze
the partition function of a CSS stabilizer code Hamilto-
nian using duality techniques. We illustrated our strat-
egy on the 4DTC and Haah’s cubic code, two quintessen-
tial stabilizer codes. Our results support the generally
held belief that the 4ADTC exhibits self-correcting prop-
erties at sufficiently low temperatures. While several
works suggested that Haah’s code may be partially self-
correcting at finite temperatures [13, 14, 31, 41], our re-
sults instead suggest that Haah’s code may suffer the
same thermal fragility as Ising chains. While the dimen-
sional reduction implied by generalized Elitzur’s theorem
[19, 20] bounds correlation functions on d-dimensional
subsystems, this does not imply that the thermodynam-
ics is that of canonical d-dimensional systems (c.f., (a)
the 90° square lattice compass model [42], a system with
d = 1 symmetries and 2D Ising behavior or (b) the “XXZ
honeycomb model”[43], a compass model with similar
d = 1 symmetries, that is dual to the 2D quantum Ising
lattice gauge theory).

The 2D Ising model can serve as a self-correcting clas-
sical memory below its critical temperature, in the sense
that the information stored is robust to magnetic or ther-
mal fluctuations [44, 45]. By contrast, the 1D Ising model
suffers a finite memory timescale independent of system
size at all nonzero temperatures due to the absence of an
ordered phase [44, 46]. Similarly, it is commonly accepted
that the 2DTC suffers from relaxation times independent
of system size, while the 4DTC is believed to function as
a robust quantum memory below a critical temperature



[15, 16, 36, 47]. The relationship between these classi-
cal and quantum memories can be understood through
duality: bond algebraic dualities suggest that the dy-
namics of the 2DTC on the torus are identical to that of
two 1D Ising chains. In the supplemental material, we
discuss how the topological degeneracy commonly asso-
ciated with these models appears as a global prefactor in
the dual partition function. A common concern regarding
the use of dualities for analyzing dynamics is that local
heat bath perturbations become generally nonlocal in the
dual model. In the supplemental material, we show that
a local coupling to a heat bath in the 2DTC can induce
a local coupling in the dual Ising model as well.

This analogy highlights the utility of the duality tech-
niques developed in this paper: by determining a stabi-
lizer code Hamiltonian’s classical dual and corresponding
universality class, one obtains all information regarding
the model’s critical phenomena without performing de-
tailed numerical analyses (see Table I). Using the tech-
niques explicitly demonstrated here and in previous work,
we conjecture that all sufficiently generic stabilizer mod-
els — CSS and beyond — can be analyzed for thermody-
namic and, in some cases, dynamical behaviors. A finite
temperature phase transition and corresponding stable
phase may be a crucial ingredient [5, 15] for large auto-
correlation times and robust quantum memories.
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