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Neuronal activity induces changes in blood flow by locally dilating vessels in the brain microvas-
culature. How can the local dilation of a single vessel increase flow-based metabolite supply, given
that flows are globally coupled within microvasculature? Solving the supply dynamics for rat brain
microvasculature, we find one parameter regime to dominate physiologically. This regime allows for
robust increase in supply independent of the position in the network, which we explain analytically.
We show that local coupling of vessels promotes spatially correlated increased supply by dilation.

Vascular networks pervade all organs of animals
and are the paradigm of adaptive transport networks.
Their self-organized architecture continuously inspires
the search for their underlying physical principles [1–4]
and at the same time serves as a template for design-
ing efficient networks in engineering [5]. The blood flow-
ing through vessels transports nutrients, hormones, and
metabolites to adjacent tissues. Metabolite exchange pri-
marily occurs within the fine vessel meshwork formed by
microvasculature. In the brain, local metabolite demand
can abruptly rise due to an increase in neural activity [6],
altering blood flow [7, 8] in the same brain region, observ-
able in fMRI [9]. During the process of increased neu-
ronal activity, neurons signal their increased demand to
adjacent astrocyte cells, which in turn trigger small ring
muscles surrounding blood vessels to relax [10]. Thus,
neural activity drives local dilation of a vessel [11, 12],
and hence regulates metabolite supply [7, 13]. However,
from a fluid dynamics perspective there is a mystery:
blood vessels form a highly interconnected network in
the microvasculature [8], resulting in a global coupling of
blood flow. A single dilating vessel can potentially change
the metabolite supply in a broad region of the network -
and thus the local increase due to dilation is a function
of specific network topology. Quantitatively, how much
control over changes in blood-based supply resides in a
single dilating vessel?

Models considering metabolite spread in tissue date
back more than a hundred years to A. Krogh [14].
Krogh’s model estimates the supply pattern in a tissue
enclosed by vessels assuming that supply is constant on
all vessel walls. Yet, on a larger tissue scale, supply spa-
tially varies along the vasculature since resources sup-
plied upstream are not available downstream. Alterna-
tive models consider vessel-based transport [15], yet only
diffusive transport is taken into account. The combined
importance of advection and diffusion for transporting
solutes in a single tube was discovered by G.I. Taylor
[16, 17], with subsequent work outlining modifications
due to solute absorption at the tube boundary [18–20].
Yet, there has been much less work capturing the cou-
pling of advection and diffusion in tubular network struc-

tures [21, 22], including solute absorption [23]. The im-
pact of a dilating vessel is hard to estimate since not only
the absorption dynamics on the level of single vessels is
changed, but also solute flux throughout the network is
rerouted since fluid flow and thus solute flux are glob-
ally coupled. However, to connect fMRI, which relies
on a fluid dynamic signal [9, 24, 25], and the change in
blood flow with neuronal activity [7, 11, 26–28], we need
to understand how vessel dilations affect the supply with
metabolites.

In this letter, we present a theoretical model to deter-
mine the change in supply resulting from the dilation of a
single vessel. On the level of an individual vessel, we an-
alytically identify three regimes, each yielding a different
functional dependence of the overall supply by absorp-
tion along the vessel wall on vessel geometry, blood flow,
and blood flow based solute flux. Numerically analyz-
ing supply dynamics in a microvasculature excerpt of a
rat brain supplied from the Kleinfeld laboratory [8], we
find that a single regime dominates. This regime has the
important property that dilating a single vessel robustly
increases the supply along the dilated vessel independent
of the exact location of the vessel in the network. We ex-
plain analytically how a single vessel can buffer the global
coupling of solute fluxes within the network and yield a
robust local increase independent of network topology.
We further discuss how a single dilating vessel impacts
the solute flux downstream and thereby induces spatial
correlations in supply increase.

To understand how a change in flow induces changes in
solute flux and supply dynamics, we first focus on a single
vessel. We assume that the flow is laminar with longi-
tudinal velocity profile U(r) = 2Ū(1 − (r/R)2) [29, 30],
where Ū denotes the cross-sectional averaged longitudi-
nal flow velocity. The dispersion of soluble molecules of
concentration C by the fluid flow within a tubular vessel
of radius R and length L is then given by

∂C

∂t
+ U(r)

∂C

∂z
= κ∇2C, (1)

where κ denotes the molecular diffusivity of the solute,
and r and z parameterize the radial and longitudinal
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FIG. 1. Supply φ by a single vessel can be partitioned into
three distinctive regimes as a function of dimensionless pa-
rameters characterizing flow and absorption, Pe = ŪL

κ
and

S = κγL
RŪ

. Dotted lines indicate separation of regimes. Re-
maining non-dimensional parameter fixed at α = 0.001. Error
ellipsoids contain the annotated percentage of vessels of the
here considered rat brain microvasculature [8] with physiolog-
ical parameters for γ and κ, see main text.

component of the vessel. The soluble molecule is ab-
sorbed at the vessel boundary, following

κ
∂C

∂r

∣∣∣∣
r=R

+ κγC(R) = 0, (2)

with absorption parameter γ. In analogy to the deriva-
tion of Taylor Dispersion [16, 17, 23], we simplify the
multidimensional diffusion-advection for C = C̄+C̃ to an
equation for the cross-sectionally averaged concentration
C̄ if the cross-sectional variations of the concentration C̃
are much smaller than the averaged concentration itself.
This is true if the time scale to diffuse radially within the
vessel is much shorter than the time scale of advection
along the vessel, R2/κ� L/Ū , if the vessel itself can be
characterized as a long, slender vessel, R� L, and if the
absorption parameter is small enough to keep a shallow
gradient in concentration across the vessel’s cross-section
γR� 1, which states that the length scale of absorption
is much bigger than the vessel radius. All these approx-
imations are valid for the rat brain microvasculature ex-
ample considered here [8]. With these assumptions, the
concentration profile along the vessel approaches a steady
state over a timescale L/Ū given by (see the Supplemen-
tal Material S1 [34] for derivation)

C̄(z) = C0 exp
(
−β(Pe, S, α)

z

L

)
, (3)

β(Pe, S, α) =
24 · Pe

48 + α2

S2

(√
1 +

8S

Pe
+

α2

6PeS
− 1

)
, (4)

where Pe = ŪL/κ is the Péclet number, α = γL, and
S = κγL/RŪ measures the ratio of absorption timescale
to advection timescale. Note, that the concentration de-
cays along the vessel starting from an initial concentra-
tion C0 that itself is determined by the solute flux enter-
ing a vessel J0. Also for the solute influx into a vessel
advective and diffusive transport contribute,

J0 = πR2C0

(
Ū +

κβ

L

)
= πR2C0Ū

(
1 +

β

Pe

)
. (5)

We define as supply of a vessel φ the integrated diffusive
flux through the entire vessel surface S of the cylindrical
vessel,

φ = −
∫
S
κ
∂C

∂r

∣∣∣∣
r=R

2πRdz. (6)

resulting in,

φ =J0
1

1 + β
Pe

·

(
α2

12SPe + 2Sβ

1 + α2

4SPe

)
· (1− exp (−β)) . (7)

For physical intuition on how flow and vessel proper-
ties affect supply, we partition the phase space of sup-
ply dynamics spanned by Pe and S into three regimes,
keeping α fixed, see Fig. 1. At large values of S � 1
and S � 1/Pe the solute decays very quickly along the
vessel. Here, all solute that flows into the vessel of cross-
sectional area πR2 is absorbed at the wall, here denoted
all absorbing regime

φall ≈ J0 = πR2C0Ū

(
1 +

β

Pe

)
. (8)

For a network this implies that after a vessel in this
regime, no solute for further absorption downstream of
this vessel is available, which indeed is physiologically
rare, 1.0% in the rat brain microvasculature considered
here. A second regime occurs at Pe � 1/S, Pe � S
where diffusive transport dominates, here denoted diffu-
sive regime. We distinguish a third regime, which we
denote advective regime where advective transport dom-
inates, defined by S � 1 and S � Pe. In both cases
the solute decay is very shallow, β � 1 in Eqs. (3), (6),
resulting in supply independent of flow velocity, except
for the dependence on the initial concentration C0

φadvective ≈ φdiffusive ≈ 2πRL · κγ · C0. (9)

Yet, note that the reason for the solute decay, i.e. β being
small, arises from entirely different transport dynamics,
see Fig. 1. This is reflected in the very different relation
between initial solute concentration at the start of the
vessel C0 and the solute influx J0 for the two regimes
(see the Supplemental Material S1 [34] for derivation)

J0,advective ≈ C0 · πR2 · Ū , (10)

J0,diffusive ≈ C0 · πR
3
2 · κ

√
2γ. (11)
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Hence, under constant solute influx J0 the diffusive and
the advective regime show a fundamentally different, yet
both non-linear dependence on the vessel radius,

φadvective ≈ J0
2γκL

RŪ
, (12)

φdiffusive ≈ J0

√
2γL√
R

. (13)

Based on these results for a single vessel we expect largely
varying increase in supply in response to vessel dilation.
The coupling of flows and solute flux in a network is likely
to make supply changes even more complex.

Within a network not only fluid flows are cou-
pled with every network node obeying Kirchhoff’s law∑
j πR

2
in,jUin,j =

∑
k πR

2
out,kUout,k but also solute flux

J is conserved at every node
∑
j Jin,j =

∑
k J0,k. Here,

the solute influx Jin,j is determined by the inlet’s vessel
inflow J0,j upstream reduced by the amount of supply,
φj , via that vessel, see Eq. (7). The influxes J0,k down-
stream a node, defined by Eq. (5), follow from the solute
concentration at the network node C0, given by

C0 =

∑
j Jin,j∑

k πR
2
out,k(Ūout,k + κβout,k/Lout,k)

. (14)

Thus, solute fluxes are subsequently propagated from
network inlets throughout the network.

To now investigate the impact of single vessel dilation
on supply within a network, we turn to an experimentally
mapped rat brain microvasculature [8]. The data speci-
fies R, U , and L for all vessels as well as the pressures at
network inlets and outlets. Focussing on glucose as pri-
mary demand, we account for glucose’s diffusion constant
κ = 6× 10−10 m2 s−1 [31] and estimate glucose’s perme-
ability rate and include γ = 200 m−1, see Supplemental
Material S2 [34]. Interestingly, we find 98% of all ves-
sels to be in the advective regime. Is there a functional
property that makes the advective regime stand out?

We next quantify the change in supply due to vessel
radius dilation in a capillary bed excerpt of the mapped
rat brain microvasculature excluding pial and penetrat-
ing vessels. To this end, we use the pressures given in the
data set [8] and impose the pressure values at inlet and
outlet vessels of a network excerpt. To be consistent with
the flows determined within the data set we use a modi-
fied hydraulic vessel resistance to account for additional
blood hematocrit resistance [32, 33] in accordance with
Blinder et al. [8]. Note, that a vessel’s hydraulic resis-
tance is only important to calculate fluid flow velocities
within vessels but does not modify the supply dynam-
ics derived above. Pressures and hydraulic resistances
then fully determine the flow velocities throughout the
network due to Kirchhoff’s law.

To identify differences in the behaviour of the three
supply regimes that may justify the physiological abun-
dance of the advective regime, we sample the effect of

FIG. 2. The advective regime is robust in increasing supply
by dilation. Histogram of change in supply ∆φ due to a single
vessel dilating by 10%. Lines indicate a range covering 69%
with both a percentage of 15.5% showing a lower or higher
supply outside the indicated range. Big dots indicate the me-
dian, with values of 0.17, 0.10, and 0.11 for the all absorbing,
advective, and diffusive regime, respectively. For each his-
togram 120 vessels of the respective regime were randomly
chosen and dilated.

vessel dilation for all three regimes, drawing randomly
120 vessels in each regime out of the total number of
21793 vessels. The sheer total number of vessels allows
us to sample underrepresented diffusive and all absorb-
ing regime without introducing a statistical bias due to
sample size. Each vessels radius is dilated by 10%, and
the flow and solute flux is recalculated throughout the
network keeping the networks inlet and outlet pressures
fixed. The relative change in supply in the dilated ves-
sel itself is evaluated in a histogram, see Fig. 2. Ves-
sels in the all absorbing regime show a broad response
to vessel dilation. Vessels in the advective regime, in
contrast, peak sharply at a robust 10% increase in sup-
ply, ∆φ = 0.1. The diffusive regime is also somewhat
peaked around ∆φ = 0.1, but in addition shows a sig-
nificant amount of vessels with smaller supply increase
of ∆φ < 0.1. Particularly the advective regime shows a
robust increase in supply matching the increase in ves-
sel diameter independent of the vessels’ exact position
within the network topology. This observation is robust
against changes in the choice of the diffusion constant and
permeability rate, see Supplemental Material S6 [34].

Despite our expectations of a non-linear change in sup-
ply from single vessel dynamics, Eqs. (12), (13), we find
a robust increase of 10% for 10% vessel dilation, which
would be reconciled within Eq. (9), if the initial concen-
tration at the inlet of a dilating vessel C0, Eq. (14), stays
constant despite changes in flow and solute flux through-
out the network. Which network properties allow C0 to
stay constant? What makes the advective regime more
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robust than the diffusive?
Let us consider a network node, where all vessels are in

the advective regime with one inlet vessel and two outlet
vessels, out of the latter one is being dilated. Following
Eq. (14) and the simplification of the solute fluxes from
Eq. (10) for the advective regime the initial concentration
at the node is

C0 ≈ Cin
πR2

inUin∑
k πR

2
out,kUout,k

= Cin, (15)

where Kirchhoff’s law was used for further simplification.
Hence, even though vessel radius dilation induces changes
in the flow, C0 ≈ Cin remains unchanged, though Cin

might be affected by upstream changes in the supply.
However, we find that upstream effects on Cin are small
if the upstream vessels are in the advective or diffusive
regime, see Supplemental Material S3 and S5 [34], which
leaves Cin and thus C0 approximately constant during
vessel dilation. This result generalizes to good approxi-
mation to the case where the non-dilating outlet vessel
is in the diffusive rather than in the advective regime,
see Supplemental Material S3 [34]. Note, that the case
where two inlet vessels merge into one outlet vessels is
fundamentally different, as then the initial concentration
at the node is a mixture from the two inlet vessels. Dila-
tion of the outlet vessel changes flow in inlets differently
and thereby changes the mixing ratio non-linearly. Phys-
iologically, we find this pattern especially closer toward
venules. Taken together, these analytical results are in
agreement with the statistics of Fig. 2 and explain in
particular the robust increase in supply by dilation if the
vessel is in the advective regime.

We next probe why the diffusive regime is less robust
and revisit the setting of one inlet and one outlet in the
advective regime, and the second outlet in the diffusive
regime. But now we compute the initial concentration at
the node given that we dilate the vessel in the diffusive
regime,

C0 ≈ Cin,adv

πR2
in,advUin,adv

πR2
out,advUout,adv + πR

3
2

out,difκ
√
γ
. (16)

Now the dilation of the vessel in the diffusive regime in-
creases the denominator and thus leads to a decrease in
resulting C0, rendering the diffusive vessel’s response less
robust compared to the advective. The same effect hap-
pens if all vessels at a node are in the diffusive regime,
even more so as no vessel in the advective regime can
buffer the dilation and diffusion dominated solute flux in-
dependent of flow velocity, see Eq. (11). Together, these
analytical arguments explain why the diffusive regime
yields a less robust increase in supply upon vessel di-
lation.

We found in Fig. 2, that the supply in upstream ves-
sel remains approximately constant during a single vessel
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FIG. 3. Advective and diffusive regime robustly increase sup-
ply downstream of a dilating vessel at the cost of decreasing
supply in parallel vessels. (a) Enlargement of microvascula-
ture excerpt exemplifying the neighborhood change in supply
due to a single vessel dilation of 10% (advective regime, black
arrow). Inlet marked by yellow star. Blue denotes a decrease,
red an increase in supply in the individual vessels. The total
change in supply is ∆φtot = 6.4% in the downstream vessels
and φtot = 0.8% in the parallel vessels. Change in C0 for the
dilating vessel is below ∆C0 < 3 × 10−4. (b) Neighborhood
statistics of supply increase ‘+’ or decrease ‘-’ due to a dilat-
ing vessel in the respective regime. Evaluated is the overall
change in supply in up to four vessels downstream or parallel
to the dilated vessel chosen at the main inlet of a loop, respec-
tively. The dilated vessel itself is excluded from the statistics
here.

dilation. What is the effect on vessels downsteam the di-
lated tube? For this, we focus on the dilating vessel’s
immediate neighborhood and find that change in sup-
ply is spatially correlated, Fig. 3. We distinguish the
vessels in the direct neighbourhood of the dilated vessel
in two categories: downstream vessels are vessels that
are located directly downstream of the dilated vessel and
parallel vessels are vessels that are downstream the node
the dilated vessels branches off, but not downstream the
dilated vessel itself. The microvasculature data set is
known to show predominantly loop topologies, with a
median size of eight vessels within a loop [8]. We thus
considered only vessels with a topological distance of four
vessels to the dilated vessel for the analysis of the imme-
diate neighbourhood. We find that the typical response
of a dilating vessel in both advective and diffusive regime
is to increase supply downstream at the cost of reducing
supply in the parallel vessels, Fig. 3 (b). More solute is
drawn along the branch of the loop containing a dilating
vessel than the dilating vessel itself is taking up, which
increases the supply in downstream vessels. This is at
the expense of the vessels in the parallel branch, reduc-
ing the supply there. See also Supplemental Material S4
[34]. While this applies qualitatively, the strength of this
effect depends on the exact network topology.

We here provided a theoretical framework to investi-
gate supply dynamics in a dynamically adapting tubular
network, where flows are globally coupled by topology.
We find that individual vessels can be classified in three
regimes by vessel geometry and flow rate. Among those
particularly the regime governed by advective transport
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- and to lesser extend also the regime governed by dif-
fusive transport - yield a robust increase in supply upon
vessel dilation within the dilating vessel, notably leaving
the supply pattern upstream unchanged and increasing
supply immediately downstream. Interestingly, the most
robust advective regime is found to dominate in brain
microvasculature. Our findings therefore promote that
vessel dilation results in a robust increase in supply inde-
pendent of the exact position of the vessel in the network.
Our results are important for understanding the link be-
tween neural activity and patterns of change in supply
invoked by vessel dilations and changes in blood flow un-
derlying fMRI. Moreover, our framework is instrumental
to predict drug delivery, design blood vessel architecture
in synthetic organs but may also open entire new avenues
for the programming of soft robotics and smart materials.
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