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Abstract

The possibility to manipulate quantum coherence and interference, apart from its fundamental interest

in quantum mechanics, is essential for controlling nonlinear optical processes such as high harmonic gen-

eration, multiphoton absorption, and stimulated Raman scattering. We show, analytically and numerically,

how a nonlinear optical process via resonance Raman scattering (RRS) can be manipulated in a four-level

double-Λ system by using pulsed laser fields. We find that two simultaneously excited RRS paths involved

in the system can generate an ultimately destructive interference in the broad-bandwidth-limit regime. This,

in turn, reduces the four-level system into an equivalent three-level system in a V configuration, capable

of naturally vanishing RRS effects. We further show that this counterintuitive phenomenon, i.e., the RRS

vanishing, can be prevented by transferring a modulated phase of the laser pulse onto the system at reso-

nance frequencies. This work demonstrates a clear signature of both quantum destructive and constructive

interference by actively controlling resonant multiphoton processes in multilevel quantum systems, and

therefore has potential applications in nonlinear optics, quantum control, and quantum information science.
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Since C. V. Raman first reported the Raman effect in 1928 [1], Raman spectroscopy has been

widely used for characterizing the low-lying energy levels of atoms [2], molecules [3], and low-

dimensional nanomaterials [4]. When the wavelength of the incident light falls within an absorp-

tion band of interest, the Raman scattering efficiency can be significantly enhanced via a resonant

two-photon process. This leads to resonance Raman scattering (RRS), which is more selective

compared to its non-resonance Raman counterpart [5–8]. A RRS process requires a three-level

system in a Λ configuration with two low-lying energy levels of the ground electronic state and an

intermediate energy level in the excited electronic state. Under certain conditions, such a three-

level Λ model can be selectively isolated from quantum systems with complex energy structures,

e.g., by using narrow-bandwidth lasers, and has been used as a standard model to study various

types of nonlinear optical schemes, including coherent population trapping (CPT) [9, 10], electro-

magnetically induced transparency (EIT) [11–15], and stimulated Raman adiabatic passage (STI-

RAP) [16–20]. However, when a pulsed laser field is applied with a broad bandwidth over multiple

off-resonant levels, more than one RRS path will be activated. Therefore the complexity will be

dramatically increased owing to nonlinear optical effect via quantum coherence and interference

within and between paths, leading to many unexpected quantum interference phenomena. This, in

turn, opens a new avenue to study these nonlinear effects via multiple-optical-path quantum inter-

ference. Understanding how the nonlinear effect can be affected and, ultimately, manipulated by

applied external fields remains a long-standing goal of both fundamental and practical significance

in quantum science and technology [21–27].

Here, we theoretically examine a multiple-optical-path quantum interference in a typical four-

level double-Λ (FLDL) system with two low-lying energy levels of the ground electronic state and

two low-lying energy levels of the excited electronic state. When such a quantum system inter-

acts with a transform-limited (TL) pulse with a sufficiently broad bandwidth, we show that two

simultaneously excited RRS paths can destructively interfere with each other, leading to a natural

vanishing of the RRS phenomenon. We further find that this RRS vanishing can be prevented by

modulating the spectral phase of the laser pulse at resonance frequencies. These findings not only

deepen our understanding of quantum interference but also demonstrate an active way of manipu-

lating nonlinear optical processes in multilevel quantum systems, which is a topic of much current

interest in quantum coherent control, quantum optics, and quantum information processing [28–

35].

As a proof of principle, we consider a prototype system of an ultracold 87Rb interacting with
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FIG. 1. Schematic of laser-induced resonance Raman scattering (RRS) in a four-level double-Λ 87Rb atom.

The system consists of the hyperfine levels F = 1 and 2 of 52S 1/2 with δ1 = 6.8347 GHz, and F′ = 1 and

2 of 52P1/2 with δ2 = 0.81656 GHz. The four hyperfine levels are denoted by |1〉, |2〉, |3〉, and |4〉, and ∆

corresponds to the detuning of ω0 to the transition frequency between states |1〉 and |3〉.

a pulsed laser field E(t) for exciting the optical D1 transition, see Fig. 1, in which the system of

Rb atoms are assumed to be in an ultracold dilute gas (e.g., via a magneto-optical trap [36, 37])

to eliminate the Doppler shift of the laser field. Because of the interaction of the nuclear angular

momentum and the electronic total angular moment, a hyperfine structure occurs, generating the

hyperfine levels F = 1 and 2 of 52S 1/2, with an energy split of δ1 = 6.8347 GHz, and the hyperfine

levels F′ = 1 and 2 of 52P1/2, with an energy split of δ2 = 0.81656 GHz. As indicated in Fig. 1,

we use the states |1〉, |2〉, |3〉, and |4〉 with energies E1, E2, E3, and E4 to denote the four hyperfine

levels, respectively. The evolution of the system from an initial time t0 to a given time t can be

described by using the unitary operator U(t, t0) with U(t0, t0) ≡ I, and a solution of U(t, t0) can be

written as (~ = 1)

U(t, t0) = U(t0, t0) − i

∫ t

t0

dt′HI(t
′)U(t′, t0) (1)

where HI(t) = exp (iH0t)(−µ̂E(t)) exp (−iH0t) in the interaction picture, with Ĥ0 =
∑4

n=1 |n〉En〈n|

and µnn′ = 〈n′|µ̂|n〉 as the the matrix elements of the dipole operator µ̂. For an initial condition

of |ψ(t0) = |1〉, the time-dependent wave function reads |ψ(t)〉 = U (t, t0) |1〉. Note that the dipole-

allowed transitions between magnetic sublevels mF and mF′ of the hyperfine levels F and F′ obey

the selection rule ∆mF = 0 for a linearly polarized laser field. In our simulations, we consider the

initial state |1〉 in mF = 1 (which can be selected by using an optical pumping technique [38]), and

therefore a FLDL configuration can be isolated from the full set of atomic transitions.
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FIG. 2. The presence of resonance Raman scattering in a three-level Λ system. (a) and (b) show the final

populations P2(t f ) and P3(t f ) versus ∆ω based on the three-level numerical (3LN) solutions at the resonant

condition ∆ = 0, which are compared with the three-level analytical (3LA) solutions. (c) and (d) show the

dependence of P2(t f ) and P3(t f ) on both ∆ω and ∆. The three-level Λ system used in simulations is shown

in (a).

The FLDL system in Fig. 1 includes two RRS paths from |1〉 to |2〉 through either |3〉 or |4〉. By

Magnus expanding U(t, t0) to first order [39], an analytic solution of a three-level Λ system with

states |1〉, |2〉, and |m〉 (m = 3, or 4) driven by a linearly polarized laser pulse E(t) can be given by

[40, 41]

|ψ(1)

12m
(t)〉 = |θ2m(t)|2 + |θ1m(t)|2 cos[θ12m(t)]

|θ12m(t)|2 |1〉 (2)

+
θ1m(t)θ∗

2m
(t)

|θ12m(t)|2
[cos θ12m(t) − 1] |2〉 + iθ1m(t) sin θ(t)

θ12m(t)
|m〉,

where the complex field areas θ1m(t) = µ1m

∫ t

0
dt′E(t′)e−iω1mt′ , θ2m(t) = µ2m

∫ t

0
dt′E(t′)e−iω2mt′ , and

θ12m(t) =
√

|θ1m(t)|2 + |θ2m(t)|2, with ω1m = (Em − E1) and ω2m = (Em − E2). For a broad-

bandwidth pulse with ∆ω > δ1, the state |2〉 is accessible via RRS. For a narrow-bandwidth pulse

with ∆ω ≪ δ1, however, the three-level system reduces to a two-level system with |ψ(1)

1m
(t)〉 =

cos[θ(t)]|1〉 + i sin[θ(t)]|m〉, i.e., θ(t) = θ1m(t) without the RRS to |2〉.

To show the dependence of the RRS on ∆ω, we consider E(t) = Re
[

1
2π

∫ ∞
0

A(ω)ei[φ(ω)−ωt]dω
]

with spectral amplitude A(ω) = A0

µ1m
exp
[

−(ω−ω0)2

2(∆ω)2

]

to excite a three-level system of |1〉, |2〉, and

|m〉. For this choice, the pulse area at t f , i.e., θ1m(t f ) (∝ A(ω1m)), is independent of ∆ω for a

given A0 at ω0 = ω1m. As an example, we demonstrate such excitations in a three-level sys-

tem of |1〉, |2〉, and |3〉, by excluding state |4〉, and numerically solve the corresponding Eq. (1)
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to calculate the wave function |ψ123(t)〉. Figures 2(a, b) show a comparison of the numerically

(exactly) calculated populations Pn(t f ) = |〈n|ψ123(t f )〉|2 with the analytically derived populations

P
(1)
n (t f ) = |〈n|ψ(1)

123
(t f )〉|2 (n = 2, 3) versus ∆ω. We choose A0 = π/4 and keep φ(ω) = 0, which

using Eq. (2) will fix θ13(t f ) = π/4 and lead to an equal population distribution between |1〉 and |3〉

in a narrow-bandwidth regime of ∆ω ≪ δ1, see Figs. 2 (a, b). The quantum state transfer (QST) to

|2〉 appears in the three-level numerical (3LN) simulations as the bandwidth increases and asymp-

totically approaches a constant in the broad-bandwidth-limit regime, in good agreement with the

three-level analytical (3LA) solutions. We further consider the effect of ∆ = ω0 −ω13 on the RRS,

see Figs. 2 (c, d). The detuning hampers the QST efficiency to |2〉, whereas it remains visible in

the region ∆ω > ∆. We also examine the same simulations for another RRS path from |1〉 to |2〉

through |4〉 by excluding |3〉, and find similar results to that in Fig. 2. These simulations strongly

support the RRS presence in the three-level Λ system driven by a laser pulse with sufficiently

broad bandwidths.

We now focus on the FLDL system by considering the two closely spaced states |3〉 and |4〉

connected to |1〉 and |2〉. Figure 3(a) shows the dependence of P2(t f ) = |〈2|ψ(t f )〉|2 on ∆ω, for

which the wave function |ψ(t)〉 is obtained by numerically solving Eq. (1) with the FLDL model

while using the same pulse as that in Fig. 2. Surprisingly, QST to |2〉 only reaches a maximal value

of 0.15% around ∆ω = 1.0δ1, and then decreases to a value of < 10−4 in the broad-bandwidth-limit

regime. Figure 3(b) shows the dependence of P2(t f ) on both ∆ω and ∆. The transition probability

to |2〉 still remains extremely small, < 10−4, even for a larger detuning. This implies that the RRS

to |2〉 is significantly suppressed in the FLDL system.

We first analyze the pulse area theorem with Eq. (2) to qualitatively understand the under-

lying mechanism in Fig. 3. Since the energy splitting between |3〉 and |4〉 is extremely small,

the variations of the used A(ω) at ω1m and ω2m can be ignored in the limit regime of ∆ω ≫ δ1,

i.e., A(ω13) ≈ A(ω14) and A(ω23) ≈ A(ω24). This implies that the values of θ1m(t f ) and θ2m(t f )

are determined by the values of µ13, µ23, µ14, and µ24. According to Refs. [42, 43], there is

a geometrical structure of µ13 = −
√

1/3µ14, µ23 = µ14 and µ24 =
√

1/3µ14, leading to a rela-

tion θ13(t f )θ
∗
23

(t f ) ≈ −θ14(t f )θ
∗
24

(t f ). When the complex pulse areas further satisfy the condition

|θ132(t f )| ≈ |θ142(t f )|, the two simultaneously excited RRS processes cancel each other out by using

the TL pulse.

To further gain insights into the RRS vanishing in Fig. 3, we derive a pulse area theorem for

the FLDL system driven by a pulsed field in the broad-bandwidth-limit regime (see details in the
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FIG. 3. The vanishing of the resonance Raman scattering in the four-level double-Λ (FLDL) system. (a)

The numerically calculated population P2(t f ) = |〈2|ψ(t f )〉|2 versus ∆ω at ∆ = 0. (b ) The final population

P2(t f ) versus both ∆ω and ∆. Insert in (a): The FLDL system used in the simulations.

Supplemental Material). The time-dependent wave function of the system reads

|ψ(1)(t)〉 = cos[θ(t)]|1〉 + iθ1(t)

2θ(t)
sin[θ(t)]|3〉 (3)

+
i
√

3θ1(t)

2θ(t)
sin[θ(t)]|4〉

with θ1(t) = 2θ13(t), and θ(t) = |θ1(t)|. The FLDL system is reduced into a three-level system in a V

configuration without QST to |2〉 at any time t, corresponding to the counterintuitive phenomenon

of the RRS vanishing. Note that the derivation of Eq. (3) does not require the strict condition

|θ132(t f )| ≈ |θ142(t f )| for generating the RRS vanishing. The analytical solution in Eq. (3) is

only valid in the broad-bandwidth-limit regime. In the narrow-bandwidth regime, however, the

two RRS paths will be naturally closed, corresponding to a three-level V system, which has an

analytical solution [40]

|ψ(1)

134
(t)〉 = cos[θ(t)]|1〉 + iθ13(t)

θ(t)
sin[θ(t)]|3〉 (4)

+
iθ14(t)

θ(t)
sin[θ(t)]|4〉

with θ(t) =
√

|θ13(t)|2 + |θ14(t)|2. Clearly, the two three-level solutions by Eqs. (3, 4) contain

different physical meanings, but it is interesting that Eq. (4) is equivalent to Eq. (3) in the broad-

bandwidth-limit regime by inserting ω13 = ω14 into Eq. (4). There is a pulse area theorem of

θ(t f ) = π/2 (i.e., θ13(t f ) = π/4), capable of achieving a complete QST from |1〉 to upper states with

25% in |3〉 and 75% in |4〉 (see details in the Supplemental Material).

Figure 4 shows a comparison of the four-level numerical (4LN) simulations with the 3LA

solutions by Eq. (4), and plots the final populations in |3〉 and |4〉 versus ∆ω and ∆. As can be

seen from Figs. 4(a, b), the 4LN results can be reproduced with high precision by using the 3LA

solutions. Both approaches converge to the theoretical values of P3 = 25% and P4 = 75%, in good
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FIG. 4. The vanishing of resonance Raman scattering in the FLDL system. (a) and (b) The final populations

P3(t f ) and P4(t f ) versus ∆ω at ∆ = 0 based on the four-level numerical (4LN) solutions, which are compared

with that by using the 3LA solutions. (c) and (d) The calculated final populations P3(t f ) and P4(t f ) versus

both ∆ω and ∆. Insert in (a): The FLDL system and the equivalent three-level V system used in simulations.

agreement the pulse area theorem by Eq. (3). A slight difference can be attributed to the break-

down of A(ω13) ≈ A(ω14) and A(ω23) ≈ A(ω24) in the narrow bandwidth regime. The dependence

of P3(t f ) and P4(t f ) on both ∆ω and ∆ in Figs. 4(c, d) demonstrates that the RRS vanishing can be

robustly observed in a broad region of (∆ω, ∆) in the FLDL system. The detuning only decreases

the efficiency of population transfer to |3〉 and |4〉, but does not destroy the RRS vanishing.

We finally present an approach to revive the RRS by modulating the sign of θ13(t f )θ
∗
23(t f ) (or

θ14(t f )θ
∗
24

(t f )) in Eq.(2), so that both RRS paths can constructively interfere with each other. The

direct application of a π phase shift at the resonance frequencies will lead to an infinitely long

pulse. In order to reduce the computational cost, we instead apply a Gaussian phase function

φ(ω) = a exp [−(ω − ωc)
2/2b2], centered at ωc to a very small window of width b < δ2, while

fixing A(ω) unchanged, as illustrated in Fig. 5(a). This corresponds to a coherent optical-phase-

modulation of nonlinear optical processes by using the current broad-bandwidth pulse shaping

technique [44, 45], which has been successfully demonstrated in several seminal experiments

[43, 46]. Figure 5(b) shows a simulation of P2(t f ) versus a from 0 to 4π by setting ωc = ω13,

which can invert the sign of θ13(t f )θ
∗
23(t f ) with a = π while keeping the sign of θ14(t f )θ

∗
24(t f ) un-

changed. Two different widths of b = 0.3δ2 and 0.5δ2 are examined for the case of ∆ω ≈ 23δ1,

which can significantly prolong the shaped laser pulse with a length of (t f − t0) > 10ns. A clear

dependence of P2(t f ) on the phase-amplitude appears with a maximum of P2(t f ) = 0.4864 at a = π

for b = 0.3δ2, indicating that the RRS can be manipulated by modulating the spectral phase at res-
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onance frequencies. This enhancement approach is different from Refs. [43, 46] by modulating

the nonresonant spectral components of the pulses.

The RRS enhancements in Fig. 5(b) exhibit another maximum of P2(t f ) = 0.4955 at a = 3.1π

with a small shift from 3π. All maximums are slightly higher than 0.4752 by directly inverting the

sign of µ13 and do not decrease to the minimum exactly at 2π and 4π. These differences imply that

the Gaussian phase with a width also modulates the spectral components around ω13, leading to

the interference of RRS with the detuned RRS. As a result, the RRS manipulation via this Gaus-

sian phase modulation depends on the actual width of the phase function. A broad width of phase

function with b = 0.5δ2 increases the enhancement in Fig. 5 (b), indicating that the deturned-RRS

paths play roles and constructively interfere with the RRS paths.

In summary, we have theoretically examined a nonlinear optical effect via multiple-optical-

path quantum interference in a FLDL 87Rb at ultracold temperatures. We found that a robust

phenomenon of the RRS vanishing can be generated by using a TL pulse in the broad-bandwidth-

limit regime. By transferring a modulated spectral phase of the laser pulse onto the system, we

demonstrated that this counterintuitive phenomenon of the RRS vanishing could be prevented,

leading to the RRS revival. This work provides a clear signature of both destructive and con-

structive interference toward ultimately manipulating resonant multi-photon optical processes in

ultracold 87Rb atoms.

Ultracold 87Rb was the first and is the most popular atom for making Bose-Einstein conden-

sates. This atom with excellent sensitivity is also studied for atomic clocks [47], quantum Raman

memory [48], quantum sensors [49], quantum gate [50], and atom interferometers [51]. Our re-
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sults contribute a new physical phenomenon to 87Rb and stimulated Raman scattering for exploit-

ing nonlinear optical effects. The RRS vanishing within the present model requires the complex

field areas to satisfy the condition θ13(t f )θ
∗
23(t f ) ≈ −θ14(t f )θ

∗
24(t f ) in the broad-bandwidth-limit

regime. According to Ref. [42], this condition is generally applicable to 87Rb (as well as to other

alkali metal atoms) initially in a pure mF magnetic sublevel. It implies that the RRS vanishing also

occurs for the system initially in a hyperfine level F (in the absence of optical pumping). For a

quantum system without the dipole relation as 87Rb atom, an optimized spectral phase could be de-

signed to either suppress or enhance the RRS processes [52–55]. Since atomic and optical physics

can also be demonstrated in artificial quantum systems such as superconducting circuits [56, 57],

and charged nitrogen/silicon vacancy centre in diamond [58–60], we expect that this RRS manip-

ulation can be applied to solid-state systems with potential applications to quantum information

and quantum computing science [61–65].
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