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A new type of a linear response Hall effect is predicted in time-reversal-invariant systems with
built-in electric field at zero magnetic field. The Hall response results from a quantum Magnus effect
where a self-rotating Bloch electron wavepacket moving under electric field develops an anomalous
velocity in the transverse direction. We show that in the ballistic limit the Magnus Hall conductance
measures the distribution of the Berry curvature on the Fermi surface.

Introduction.— Studies of various Hall effects led to a
significant progress throughout the history of solid state
physics. Starting with the classical Hall effect[1], anoma-
lous Hall effect [2], spin Hall effect [3], thermal Hall effect
[4, 5], quantum Hall effect [6], quantum spin Hall effect
[7] and quantum anomalous Hall effect [8–10] have been
discovered. Among these, classical and anomalous Hall
effects appear in time-reversal-breaking systems, where
an applied electric field induces a transverse charge cur-
rent.

An intrinsic contribution to anomalous Hall effect is
associated with the Berry curvature, a fundamental in-
gredient of the modern band theory derived from the
electron’s wavefunction [11]. When a Bloch electron is
accelerated under an electric field, the distribution of
the electron density changes with increasing momentum,
thus giving rise to an anomalous velocity proportional to
the Berry curvature. In time reversal breaking systems,
the total Berry curvature of the occupied states can be
nonzero, resulting in an intrinsic anomalous Hall effect.
The impact of the Berry curvature on the transport phe-
nomena has attracted a tremendous interest [12–17].

On the other hand, there exists a large class of time-
reversal-invariant, inversion-breaking materials which
feature a large Berry curvature Ω(k) in momentum
space, especially near the gap edge or the band cross-
ing points. Examples include two-dimensional transition
metal dichalcogenides (TMDs) [18], graphene multilayer
[19, 20] and heterostructures [21], topological insulator
surface states [22] and Weyl semimetals [23–25]. Due
to time reversal symmetry, the distribution of the Berry
curvature satisfies Ω(k) = −Ω(−k). It is an intriguing
question whether such a distribution of Berry curvature
with a zero total can lead to any interesting phenomena
in charge transport.

In this work, we demonstrate a new type of linear-
response Hall effect induced by the Berry curvature and
the built-in electric field in mesoscopic systems under
time-reversal-symmetric condition. We consider electron
transport in a Hall bar device made of a 2D material,
such as bilayer graphene or transition metal dichalco-
genide. In our setup, the source and drain regions have
different carrier densities, which can be achieved by local
bottom gates. The difference in the electrostatic poten-
tial energy due to the bottom gates Us − Ud ≡ ∆U is

accompanied by a built-in electric field in the junction in
the stationary state, as shown in Fig. 1(a). We study the
electrical current in linear response to applied bias volt-
age Vsd. Since electrons moving from the source to the
drain have nonzero net velocity, their wave packets can
carry orbital angular momentum and nonzero net Berry
curvature. The motion of the chiral Bloch electrons un-
der the built-in electric field leads to a quantum analog
of the Magnus effect: as an electron traverses the junc-
tion, its center of wavepacket acquires a transverse shift.
This in turn gives rise to a transverse current linearly
proportional to the bias voltage, i.e., a Hall effect. We
term this phenomenon “Magnus Hall effect”. It occurs
in nonmagnetic systems at zero magnetic field, but relies
on the built-in electric field. We show that in the ballis-
tic limit, the Hall conductance is directly related to the
Berry curvature distribution of the underlying material.

Magnus Hall effect is intimately related to nonlinear
Hall effect. This recently theoretically predicted phe-
nomenon occurs in time-reversal-invariant materials in
which the dipole moment of Berry curvature, i.e., Berry
curvature dipole, can induce a Hall effect, where the
transverse current depends quadratically on the applied
electric field [26]. This phenomenon has been subse-
quently observed in bilayer WTe2 [27, 28]. In the case of
nonlinear Hall effect, reversing the electric field doesn’t
change the transverse current. In Magnus Hall effect,
transverse current is preserved under reversing both the
source-drain voltage and the direction of the built-in elec-
tric field as presented in Fig.1(b). In an alternative sce-
nario where the electric field arises from the source-drain
voltage Vsd itself instead of the bottom gates, the trans-
verse current becomes second order in Vsd, resulting in
nonlinear Hall effect. Our work thus opens a pathway
to “Hall diodes” for high-frequency nonlinear transport
based on the quantum materials that have a significant
distribution of Berry curvature.

Electronic Magnus effect.— First we shall consider an
electron wave-packet which travels inside a sample. The
sample has a short segment (between x = 0 and x = L)
within which there is spatially varying potential energy
U(x) arising from different gate voltages on the oppo-
site sides (this corresponds to the built-in electric field
E = 1

e
∂U
∂x x̂ = Ex(x)x̂). We assume that U(x) is slowly

varying (small built-in electric field) so that wave-packets
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still have well-defined momentum k. This means that
the length of the device should be larger than few tens
of nanometers. Inside this region, motion of the wave-
packet is described by the semiclassical equations of mo-
tion [12]:

ṙ =
1

~
∂εk
∂k
− 1

~
Ω× ∂U

∂r
, k̇ = −1

~
∂U

∂r
(1)

Since the built-in electric field is small, wave packet
momentum k does not change substantially under accel-
eration and remains approximately constant at its initial
value k0. Therefore, the transit time through the electric
field region of an incident electron with velocity (vx, vy)
is simply t = L/vx. During this time, the electron with
vy 6= 0 will also travel in the y direction. Importantly,
between x = 0 and x = L there will be an additional dis-
placement of the wave packet along y due to the anoma-
lous velocity as for 2D systems Berry curvature has only
the z component Ω(k) = Ωz(k)ẑ. This displacement is
given by:

∆yA = −
∫ t

0

Ωz(k)

~
∂U

∂x
dt′ ≈ − 1

~vx
Ωz(k0)

∫ L

0

∂U

∂x
dx =

=
1

~vx
Ωz(k0)∆U (2)

with ∆U = −
∫ L

0
∂U
∂x dx being the difference in the poten-

tial energy. Therefore, an electron wave packet with a

GateGate

FIG. 1. (Color online) (a) Geometry of the device for Mag-
nus Hall effect. Source and drain regions are separated by a
segment with built-in electric field. Electron that exits the
source exhibits a Magnus shift ∆yA. Potential energy U(x)
profile in the central region determines the position of the
band bottom. (b) Direction of Hall current is preserved un-
der inversion of both the direction of potential drop and the
electrochemical potential bias.

non-zero Berry curvature moving through the region of
electric field will acquire an additional shift in the direc-
tion perpendicular to the electric field as schematically
shown in Fig. 1(a). This in turn leads to a current den-
sity in y direction by integrating single wave-packet con-
tribution −e∆yA/t = −e/(~L)Ω(k0)∆U over the occu-
pied states. This transverse current vanishes in equilib-
rium. However, in the current carrying steady state, the
modes with positive and negative velocity are not equally
occupied. Since in systems with time-reversal symmetry
Berry curvature is opposite for k and −k states (which
also have opposite velocities), this effect can lead to a
Hall current even in nonmagnetic materials. To see more
clearly how the Hall current arises here, we employ the
Boltzmann transport equation.

Boltzmann transport equation solution.— To describe
the mesoscopic electron transport in a 2D system we use
a collisionless Boltzmann equation (BE):

∂f

∂t
+ ṙ · ∂f

∂r
+ k̇ · ∂f

∂k
= 0 (3)

where f(k, r) is the occupation distribution function. We
are looking for a stationary state distributions, so ∂f

∂t =
0. We solve the Boltzmann equation in a geometry of a
stripe of infinite width in y direction and finite length L
in x direction. At x < 0 and x > L we have a source and
a drain. Since the system is translationally invariant in
y direction, the stationary distribution function will be
independent of y.

The wave packets evolve according to the semiclassical
equations (1). The energy of the electrons in the segment
is:

ε(k, r) = εk + U(x) (4)

where εk is the band energy. In equilibrium, the solution
is given by the Fermi-Dirac distribution with constant
electrochemical potential µ̄, but with spatially changing
energy (4) and can be expressed as:

f0(k, r) =
(
eβ(ε(k,r)−µ̄) + 1

)−1

(5)

f0(k, r) is a solution of Boltzmann equation (3) as can
be verified using Eqs. (1). This solution guarantees that
no current is flowing in the system as at each energy and
position the number of states with k and −k is equal.

To obtain a solution that corresponds to a steady cur-
rent flow, we apply a small bias Vsd in a form of imbalance
of electrochemical potentials between the source and the
drain, so that µ̄D = µ̄ and µ̄S = µ̄− eVsd = µ̄+ ∆µ̄. We
have to solve BE with boundary conditions that take into
account the presence of source and drain at x = 0 and
x = L. Taking into consideration the device geometry of
our system, we now look for a solution in the lowest order
of the perturbation in the electrochemical potential im-
balance. To achieve this, we write f = f0 + f1, where f1
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is the nonequilibrium part first order in the perturbation
∆µ̄. This gives an equation for f1:

1

~
∂f1

∂x

∂εk
∂kx
− 1

~
∂U

∂x

∂f1

∂kx
= 0 (6)

Since we assumed that U(x) is slowly varying, the sec-
ond term on the left hand side is small, so we drop it
and we arrive at ∂f1

∂x = 0. Therefore, f1(k, r) only de-
pends on k. We can now determine its form from the
boundary condition. The larger electrochemical poten-
tial of the source region results in a surplus of electrons
entering the system at x = 0 interface with positive vx
velocity and propagating across the device without any
scattering in the ballistic limit. This boundary condition
gives us:

f1(k, r) =

{(
−∂f0∂εk

)
∆µ̄ vx(k) > 0

0 vx(k) < 0
(7)

where vx(k) = 1
~
∂εk
∂kx

. Equipped with this solution, we are
able to calculate the longitudinal and the Hall response
of our system. We have then:

jx = −e
∫

d2k

(2π)2
vxf1 = − e

h

∆µ̄

2π

∫
vx(k)>0

d2k
∂εk
∂kx

(
−∂f0

∂εk

)
(8)

jy = −e
∫

d2k

(2π)2
vyf1 = j0

y + jH ,

j0
y = − e

h

∆µ̄

2π

∫
vx(k)>0

d2k
∂εk
∂ky

(
−∂f0

∂εk

)
, (9)

jH =
e

h

∆µ̄

2π

∫
vx(k)>0

d2kΩz(k)
∂U

∂x

(
−∂f0

∂εk

)
. (10)

Here j0
y term arises from the Fermi surface anisotropy

and depends on its orientation relative to the direction
of applied bias x̂. Note that j0

y is independent of ∆U ,
which can be used to distinguish it from Magnus Hall
component jH . However, as we shall show later, j0

y term
can also vanish due to symmetry.

To obtain the Hall current due to the Berry curvature,
we integrate the anomalous velocity contribution over the

whole length of the device Iy =
∫ L

0
dxjH and then we can

define Hall conductance as GH = −eIy/∆µ̄ and obtain
at T = 0:

GH =
e2

h

∆U

2π

∫
vx(k)>0

d2kΩz(k) δ (εk − µ) (11)

FIG. 2. (Color online) Magnus Hall conductance GH as
a function of the chemical potential µ at T = 0.01 and
∆U = 0.05 from Eq. (11) (dashed) and Landauer-Buttiker
simulation (solid). Inset shows the distribution of Berry cur-
vature of the valence bands in the Brillouin zone. Green line
shows the Fermi surface for E = −0.35 (solid for vx > 0 and
dashed for vx < 0).

where the electrostatic potential energy difference across
the junction ∆U = Us − Ud is assumed to be small.

This equation is the main result of this work. First
of all, in the limit of small ∆U the Hall response does
not depend on the detailed spatial dependence of the po-
tential energy. Second, the dependence on ∆U is linear
and the Hall current is independent of the system size in
the ballistic limit. The effect is reduced by inclusion of
disorder as we show in Supplemental Materials.

Crucially, Magnus Hall current is determined by the
Berry curvature of the electrons with a positive veloc-
ity along the direction of the applied bias. While the
Hall current depends on the integral of the Berry cur-
vature over the Fermi surface, it nevertheless offers two
tuning knobs that make it a perfect tool to characterize
the Berry curvature distribution. First of all, by apply-
ing an overall gate voltage potential, one can tune the
chemical potential in the whole device and scan differ-
ent Fermi surfaces. Secondly, by varying the direction of
the applied bias (rotating the Hall bar geometry) with
respect to the crystalline axis, the angular distribution
of Berry curvature within a given Fermi surface can be
established.

Model.— To demonstrate this effect explicitly, we turn
to a concrete model, which breaks inversion symmetry,
but preserves time-reversal symmetry. We have chosen a
simple two band model with the Hamiltonian:

H(k) = Ak2 +
(
Bk2 + δ

)
σz + vykyσy +Dσx. (12)

It contains two massive Dirac cones which are tilted when
A 6= 0. This model captures the essential features of
the tilted Dirac cones of topological crystalline insulator
surface states [26] and low-energy band structure of 2D
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WTe2 [18]. More details of the model are presented in
the Supplemental Materials.

We can now compute the Berry curvature Ω(k) distri-
bution in the Brillouin zone for parameters A = 0, B =
1, δ = −0.25, vy = 1.0, D = 0.1, which is shown in the in-
set of Fig. 2 for the valence band. While the total Berry
curvature integrated over the Brillouin zone is equal to 0,
the distribution consists of two peaks of opposite signs,
located at the Dirac points.

Furthermore, this model possesses mirror symme-
try Mx : H(kx, ky) → H(−kx, ky), which guarantees
that ε(kx, ky) = ε(−kx, ky). For D = 0, this model
has an additional mirror symmetry My : H(kx, ky) =
σzH(kx,−ky)σz. This symmetry is broken for D 6=
0. However, because the model is also time-reversal-
invariant, we have ε(−kx, ky) = ε(kx,−ky), which causes
the current density j0

y of Eq. (9) to vanish. Therefore,
the Hall current will be determined solely by the Magnus
Hall contribution jH of Eq. (10) and GH can be calcu-
lated according to Eq. (11). Result of such a calculation
is presented as the dashed curve in Fig. 2 as a function
of the chemical potential. Even though the total integral
of Ω(k) vanishes, because our result for GH only relies
on the Berry curvature of Bloch states with vx > 0, it is
non-zero. For the set of parameters used in the calcula-
tion, both bands are symmetric with respect to E = 0
line and so the result for the conduction band is a mirror
image of the curve for the valence band. We note that the
direction of the Hall current is the same for both bands,
because while the Berry curvature switches sign to op-
posite between the two bands, the velocities for given k
also change to opposite and as a result the integration
occurs over the regions with the same values of Ω(k).

These approximate results derived from the semiclassi-
cal Boltzmann transport approach can be compared with
a numerical tight-binding simulation using the Landauer-
Buttiker method. Details of the calculation are in Sup-
plemental Materials. All the numerical simulations have
been performed using Kwant package [29]. We con-
sider the chemical potential dependence of GLBH , which
we present as the solid curve in Fig. 2 for L = 200,
W = 2400 lattice sites and ∆U = 0.05. The curve is ob-
tained by temperature broadening with T = 0.01. The
qualitative behavior of the semiclassical result is repro-
duced with an asymmetric peak positioned away from
the band bottom. The difference can be attributed to
the differences in the geometry of the setups for numer-
ical simulation (finite width leads injecting current into
the system) and semiclassical calculation (infinite width
of the setup).

Candidate materials.— To observe the Magnus Hall
effect under time-reversal symmetry, several conditions
must be satisfied. First of all, the underlying material
must break the inversion symmetry in order to have a
non-zero Berry curvature in the Brillouin zone. Further-
more, Berry curvature of the right and left moving modes

FIG. 3. Hall conductance for bilayer graphene model for
∆U = 10 meV. Inset: Berry curvature distribution around
K and K′ valley of valence band of bilayer graphene. Green
line shows the Fermi surface at µ = −60 meV (solid for vx > 0
and dashed for vx < 0).

must be asymmetric. For example, under time-reversal
symmetry massive Dirac fermions have to appear in pairs
with an opposite sign of the Berry curvature. If they are
isotropic, there will be an equal number of right movers
with both signs of Ω(k) in each Dirac valley and their
contributions will cancel each other. However, in general
the Dirac cones are not perfectly isotropic and perfect
cancellation will not occur. Two examples of materials
that satisfy this condition are monolayer graphene on
hBN (sublattice symmetry is broken due to formation
of Moire superlatice) [21, 30–32] and bilayer graphene
with perpendicular electric field applied [19, 20, 33]. In
both cases trigonal warping introduces asymmetry be-
tween the right and left movers in each valley. Moreover,
these platforms support devices of high quality, which
enable ballistic motion of electrons [34–36], beneficial for
observation of the predicted effect.

As an example we use a model of bilayer graphene
with trigonal warping and perpendicular electric field
that opens up a gap. Calculations are performed using
low-energy Hamiltonian that describes both K and K ′

valleys of bilayer graphene (labeled by s = ±1) [33]:

Hs =

(
∆ svk−s − λk2

s

svks − λk2
−s −∆

)
(13)

where k± = kx ± iky. Berry curvature distribution near
both valleys is presented in the inset of Fig.3. The param-
eters used in the calculations are ∆ = 50 meV, v = 105

m/s and λ = 1/(2m∗) with effective mass m∗ = 0.033me,
me being electron mass [19, 37]. The Fermi surface at
µ = −60 meV is indcated by the green line, solid for
vx = 1

~
∂εk
∂kx

> 0 and dashed for vx < 0. We can now
use this to compute the Hall conductance as a function
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of chemical potential in the vicinity of the band edge us-
ing the analytical formula (11), which is shown in Fig. 3
for ∆U = 10 meV and taking spin degeneracy into ac-
count. Our result demonstrates explicitly that Magnus
Hall effect does not rely on the Berry curvature dipole
[26, 38–43] (which is absent in bilayer graphene with trig-
onal warping) or the presence of skew scattering [44–47]
that are necessary conditions for nonlinear Hall effect.

Summary.— In this paper we have demonstrated the
existence of Magnus Hall effect in inversion symmetry
breaking, but time reversal invariant systems that have
non-zero Berry curvature. The effect relies on built-in
electric field in the device and should be most pronounced
in ballistic systems. Therefore, the device should be
shorter than the mean free path, while also being long
enough in order to allow for the slow variation of the
potential energy. For bilayer graphene this translates to
the length of the junction between 100 nm and 1 µm.
Since both the bottom gate separation and the applied
voltage can be controlled experimentally, we believe that
it should be possible to tune the device into the most
optimal regime for sufficiently clean samples.

The significance of the Magnus Hall effect is twofold.
Firstly, it opens a pathway to a new generation of cur-
rent rectification devices. Furthermore, it also provides
a much needed tool to map Berry curvature distribution
of quantum materials in momentum space.
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