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Intense, mutually coherent beams of multi-harmonic XUV (Extreme Ultraviolet) light can now
be created using seeded Free-Electron Lasers (FELs), and the phase difference between harmonics
can be tuned with attosecond accuracy. However the absolute value of the phase is generally not
determined. We present a method for determining precisely the absolute phase relationship of a
fundamental wavelength and its second harmonic, as well as the amplitude ratio. Only a few easily
calculated theoretical parameters are required in addition to the experimental data.

Quantum mechanical processes, such as photoioniza-
tion, are defined by amplitudes and phases of the par-
ticles involved, and their description requires the deter-
mination of all of these, as for example in complete ex-
periments [1–3]. While amplitudes can often be deduced
from experimental intensities, the determination of phase
is usually more challenging. Phase determination implies
the concept of coherence, intrinsic in the nature of waves,
but not relevant for classical particles. Photoionization is
one of the best showcases for such quantum mechanical
concepts, as the phase of the photons is imprinted on the
emitted electron wavefunction.

Recently, coherent optical experiments have become
possible at short wavelengths using a seeded Free-
Electron Laser (FEL), so that multi-harmonic XUV ra-
diation can be used to coherently control the outcome of
experiments [4, 5]. The phase tuning of the light field
does not involve the use of a traditional delay line but
instead utilizes a technique based on accelerator physics
in which the electron beam, rather than the light, is de-
layed to adjust the phase shift [6]. In the first group of
experiments [4, 5, 7], the relative phase between a fun-

damental wavelength and its second harmonic was tuned
with a precision of a few attoseconds, but the absolute
phase difference was unknown, that is, the zero of the
phase scale was not determined. Further experiments
are planned: coherent control experiments using bichro-
matic light like the examples above, the production of
XUV pulse trains via a finite number of coherent har-
monics, and other more exotic schemes.

The key to all of these methods is control of the am-
plitude and phase of each harmonic component, so it is
important to know both of these precisely. This knowl-
edge is also indispensable for theoretical predictions and
simulations of the experiments. The relative amplitudes
of two wavelengths can be controlled (e.g., by gas and
solid filters, or via accelerator parameters) and measured.
The phase difference can be varied very precisely [6], but
it is experimentally difficult to measure it absolutely at
short wavelengths. At long (optical) wavelengths, there
are standard methods available for determining the phase
difference between two harmonics, for instance by fre-
quency doubling of the fundamental and observing inter-
ference with the second harmonic [8]. Such methods are
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not available at short wavelengths because of the lack of
suitable non-linear materials. Only recently has soft x-
ray second harmonic generation at a surface been demon-
strated using FEL radiation [9], but this is far from being
a practical diagnostic.

The method we describe employs gas phase targets,
and can be used at a range of wavelengths. It requires the
ionization of an ns electron (n is the principal quantum
number), and we demonstrate the method for the He
atom. For future coherent control experiments at soft
x-ray FELs, it will be important to control and measure
phase at inner shell excitation energies, and the method
we present can be applied to this task, using other atomic
sub-shells such as Ne 2s, C 1s, Ne 1s, etc.

The reason that it is difficult to measure phase at a
FEL is as follows. Free-Electron Laser radiation is gen-
erated by relativistic electrons passing through several
arrays of magnets known as undulators. The wavelength
is selected by tuning the magnetic field of each undulator
to the appropriate, wavelength every undulator period.
resonant value for which the electrons lag the radiation
phase by exactly one period every undulator period. Be-
tween each pair of undulators, there are fringe magnetic
fields, which lengthen the path of the electron beam by
a quantity that is not necessarily an integral value of the
radiation wavelength and causes consecutive undulators
to emit out of phase. For single wavelength operation,
this path length difference is compensated by the use of
phase shifters [6]; under the assumption that the out-
put is maximum when all undulators emit in phase, a
look-up table is generated for all phase shifters and all
wavelengths.

Bichromatic light is created by tuning the magnetic
field of one or more undulators to the resonant condi-
tion for a harmonic wavelength, and in the following we
consider only the fundamental/second-harmonic config-
uration i.e., wavelengths λ and λ/2 (and corresponding
frequencies ω and 2ω). We first tried to use the single-
wavelength lookup table to produce a new one for the
bichromatic configuration, assuming that extra delays
from undulator fringe fields are evenly distributed along
the space between undulators. This method was not suffi-
ciently precise to guarantee the accuracy required by the
experiment (as an example: 10 attoseconds correspond
to a phase of 2π/10 at 30 nm).

If the absolute phases were known at a reference pair
of wavelengths λr and λr/2, one could consider keeping
the undulator gaps fixed and tuning to another wave-
length by changing the electron beam energy in the ac-
celerator. However, experimental tests with a 3% elec-
tron energy change (corresponding to a 6% wavelength
change) showed that the necessary readjustment of the
accelerator in terms of trajectory, quadrupole strengths,
and undulator resonance could not guarantee the desired
phase stability.

Besides the insurmountable difficulties we just illus-
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FIG. 1. Schematic process of interference between the partial
photoelectron waves created by single- and two-photon ioniza-
tions. The (short) red arrows mark the fundamental photon,
while the (long) blue one indicates the second harmonic. The
horizontal lines show the lowest energy levels of helium.

trated, these two unsuccessful methods cannot account
for the phase uncertainty later introduced by the photon
transport system through various optical elements (mir-
rors, filters, gas cell, etc). For this reason, the successful
method demonstrated hereafter, which determines the
absolute phase difference directly in the experimental
chamber at the end of the beamline is very appealing.
It is based on non-linear optics, and on the interference
which is observed in the Photoelectron Angular Distri-
bution (PAD) between one- and two-photon ionization
processes.

The schematic process of ionization of an ns electron
is shown in Fig. 1. For two-photon ionization by linearly
polarized light of frequency ω, there are two outgoing
partial waves of s and d character, while for single-photon
ionization by frequency 2ω, there is a single outgoing p
wave. These three outgoing waves interfere to give a PAD
which depends on their relative phases.

The field is described by:

E(t) =
√
Iω(t) cosωt+

√
I2ω(t) cos(2ωt− φ), (1)

where Iω (t) , I2ω (t) are the envelopes of the two pulses,
and φ denotes the absolute ω-2ω relative phase (the
larger φ, the more delayed the 2ω pulse). The exper-
imental phase setting is φ′ = φ + φ0, where φ0 is an
unknown phase offset. φ′ is derived from a reading of the
position of the magnetic structure creating the delay of
the electrons [6] and can be controlled with a resolution
of a few attoseconds [4]. φ0 corresponds to additional
delays introduced by magnetic stray fields and photon
transport.
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Within perturbation theory and the rotating wave ap-
proximation, and for parallel, linearly polarized long
pulses, the most general form of the PAD Ie(θ) is the

modulus squared of a combination of spherical harmon-
ics Y`,m with angular momentum ` up to 2, and m =
0:

Ie(θ) =
∣∣∣cseiηsY0,0(θ, ϕ) + cpe

i(ηp+φ)Y1,0(θ, ϕ) + cde
iηdY2,0(θ, ϕ)

∣∣∣2
(2)

where cs, cp and cd are amplitudes of partial waves, θ is the polar angle with respect to the electric vector (the
azimuthal angle ϕ is redundant), and ηs, ηp, ηd are scattering phase shifts. volume of the interaction region is not
taken into account. Eq. (2) is traditionally written as a series expansion of Legendre polynomials P`(cos θ)

Ie(θ) =

(
c2s + c2p + c2d

)
4π

[
1 +

4∑
`=1

β`P`(cos θ)

]
. (3)

character, and the expression of the asymmetry parameters β` as a function of cs, cp, cd (Eqs. 4–7, with h = 1) is
found, after some tedious algebra, using the identities (S1, S5–S7) in the Supplemental Material [10].

Experimentally, there are a number of challenges to be faced, due to non-ideal experimental conditions, such as
variations of intensity across the excitation volume, incomplete coherence, small misalignments of the focal spots, etc.
We define the decoherence parameter h ∈ [0, 1] which we use to phenomenologically correct for these imperfections,
and scale β1 and β3 oscillations. The resulting expressions for βl are:

β1 = h · 4
√

15cdcp cos (−ηd + ηp + φ) + 10
√

3cpcs cos (ηp − ηs + φ)

5 (c2d + cp2 + c2s)
(4)

β2 =
10c2d + 14

√
5cdcs cos (ηd − ηs) + 14cp

2

7 (c2d + cp2 + c2s)
(5)

β3 = h · 6
√

15cdcp cos (−ηd + ηp + φ)

5 (c2d + cp2 + c2s)
≡ [β3]0 cos [φ′ − (φ0 + ηd − ηp)] (6)

β4 =
18c2d

7 (c2d + cp2 + c2s)
(7)

β1 −
2

3
β3 = h · 2

√
3cpcs cos (ηp − ηs + φ)

c2d + cp2 + c2s
≡
[
β1 −

2

3
β3

]
0

cos [φ′ − (φ0 − ηp + ηs)], (8)

Eq. (8) is derived from Eqs. (4) and (6) so that, like
Eq. (6), the right hand side can be factored into a cosine
containing the optical and scattering phase dependence,
and an amplitude independent of phase (the prefactor in
square brackets). We note that Eqs. (5) and (7) for β`,
where ` is even, do not depend on phase, in agreement
with previous results [11, 12].

Eqs. (6) and (8) are among the main results of this
work. At fixed photon energy, a graph of these quanti-
ties against experimental phase φ′ yields two oscillatory
curves, whose absolute phases are independent of pho-
ton intensity. For the particular case of He, the values
of scattering phase shifts ηs, ηp and ηd for a wide range
of electron energies are available in the literature [13–15].
We now show that we are able to extract two independent
values of the phase offset φ0, whose excellent agreement
attests to the robustness of the method. As well, further

information can be extracted to benchmark the method,
for example the difference ηd−ηs can be determined from
the phase difference of the curves of Eq. (8) and Eq. (6).

The amplitude of the oscillatory curves depends on the
coherent mixing of the two photon fields: the ratio cs/cd
can also be extracted from Eqs. (8) and (6). The ra-
tio of the two amplitudes of oscillation,

[
β1 − 2

3β3
]
0

and
[β3]0 is equal to cs/cd multiplied by the numerical fac-

tor
√

5/3. Further manipulation of all equations yields
the ratio (c2s + c2d)/c

2
p which in combination with theoret-

ical calculations yields the relative intensities of the two
fields. indicated by Eqs. (6) and (8). At fixed photon
energy, a graph of these quantities against phase yields
two oscillatory curves. Their relative phase is determined
by the argument of the cosine functions and is indepen-
dent of photon intensity. The amplitude of the oscillatory
curves is independent of phase, but does depend on the



4

amplitude of the photon field. From the relative ampli-
tudes of the curves, we may extract information about
the effective relative photon amplitudes, even in the case
of imperfect experimental conditions.
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FIG. 2. β parameters as a function of φ. Markers: β pa-
rameters of data set A as a function of phase. Curves: co-
sine/constant fit (odd/even β). Blue triangles, β1 − 2β3/3;
black circles, β2; green inverted triangles, β3; red squares, β4.
Error bars show standard errors of least squares fitting us-
ing the model described in Eq. (3). Linearly polarized light,
λ=86.7 nm, λ/2=43.4 nm.

wide range of electron energies The photoionization
processes can be accurately simulated using the time-
dependent close-coupling (TDCC) method [16, 17] or the
multiconfiguration time-dependent Hartree-Fock (MCT-
DHF) method [18–23]. We have performed TDCC simu-
lations for a series of photon energies and list the values
of cs, cp, and cd relevant for this experiment in Table I.
In the Supplemental Material [10] Table II, we compare
the values of ηs − ηd and ηp − ηd from our simulations
with those reported in Ref. [15], and they agree very
well. We have also confirmed that the PADs obtained
from TDCC and MCTDHF simulations are in excellent
agreement with each other. In the present TDCC cal-
culations, the amplitudes are normalized so that c2s + c2d
and c2p correspond to the degree of ionization by ω and
2ω, respectively, for a 7 fs pulse duration. This value is
much shorter than the experimental duration, and was
chosen for reasons of computational economy. So long
as the bandwidth of the pulse is sufficiently far from any
atomic resonance, one can safely scale the results to the
longer experimental pulses [16, 17]. Note that, for a given
photon energy ~ω, c2s, c

2
p, and c2d scale linearly with pulse

duration; cs and cd scale as Iω whereas cp scales as
√
I2ω.

Thus, one can calculate β parameters for any intensity
and pulse duration from these tabulated values as long
as the perturbative treatment is valid and processes of
higher order than those considered here are negligible.

We used a Velocity Map Imaging (VMI) spectrome-
ter [24] to measure the PAD described by Eq. (3) (alter-
native instruments include multi-detector electron time-
of-light spectrometers [25, 26]). The angular distribu-
tions and photoelectron spectra were determined by anal-
ysis after inversion of the velocity map images. The sam-
ple was irradiated with fundamental radiation at one of
the wavelengths λ = 87.0, 78.0, or 65.0 nm and its sec-
ond harmonic λ/2 = 43.5, 39.0, 32.5 nm, and the PAD
was measured. The second harmonic intensity was set
so that the measured ratios of ionization rates due to
single- and two-photon ionization were close to 2:1 for
data sets A, B and C, while for data set D, it was 4:1.
The phase was tuned using the phase shifters installed at
FERMI [6]. The intensities were sufficient to cause sig-
nificant ionization, without danger of saturation effects,
see Supplemental Material [10].

From the VMI data, we extracted β1, β2, β3, and β4 as
a function of the experimental relative phase φ′ = φ+φ0
between the two optical pulses of ω and 2ω (see Eq. (1)).
An example of the results for the data set A at 14.3 eV is
shown in Fig. 2, where β2, β3, β4 and β1− 2

3β3 are shown.
As expected, β3 and β1 − 2

3β3 oscillate while β2 and β4
are constant. From least-squares fitting of the data with
cosine curves and offsets, we extracted six parameters,
β2, β4, [β3]0, φ0 + ηd − ηp, [β1 − 2

3β3]0, and φ0 − ηp + ηs.
The results are given in Table II for four data sets we
recorded.

To determine φ0 from the measurements, we substi-
tuted the calculated values of phase (see Supplemental
Material [10], Table II) into Eqs. (6) and (8) and ob-
tained two values of the phase offset φ0, see Table II,
which agree to within 0.03 - 0.04 rad, or 2 degrees. Fig-
ure 2 illustrates this, where it can be seen that the choice
of ηp and either ηs or ηd yields the values of φ0 and of
the remaining η.

There is a large difference in the values of φ0 for differ-
ent data sets, for example B and C: this is because the
two sets were taken about 68 hours apart, after numerous
changes of undulator magnetic fields, and small correc-
tions to the accelerator trajectory. During a scan, which
lasted of the order 2 hours, no changes to the accelerator
were made, other than scanning the phase. We checked
that the conditions were sufficiently stable by repeating
the first points of a scan at the end of the scan, and by
scanning with increasing phase, followed by decreasing
phase.

Let us now return to the quantities cs/cd and ηs − ηd
extracted from the fit parameters as explained above.
These quantities do not depend on the pulse intensity and
thus can be directly compared with the ab initio results in
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~ω Imax
2ω cs cp cd ηs − ηd ηp − ηd σ

(2)
ω σ

(1)
2ω

(eV) (W/cm2) (rad) (rad) (10−52 cm4/s) (10−18 cm2)
14.3 1.34× 1010 3.22× 10−3 1.14× 10−2 −1.09× 10−2 5.36 2.26 12.9 5.92
15.9 1.24× 1010 1.77× 10−3 9.44× 10−3 −9.28× 10−3 5.07 2.12 11.0 4.92
19.1 1.09× 1010 −4.76× 10−4 6.81× 10−4 −6.79× 10−3 4.76 1.985 8.24 3.44

TABLE I. Ab initio results using the time-dependent close-coupling (TDCC) method. Both ω and 2ω pulses are assumed to
have a Gaussian temporal profile with 7 fs FWHM pulse duration. The peak intensity of ω is fixed at 1013 W/cm2. Imax

2ω is the
2ω peak intensity at which the ionization yields by ω and 2ω pulses (c2s + c2d and c2p, respectively) are equal to each other. The

values of cs, cp, and cd are listed for this condition. σ
(2)
ω is the cross section for two-photon ionization by the ω pulse, σ

(1)
2ω is

the cross section for single-photon ionization by the 2ω pulse.

Data set A Data set B Data set C Data set D
Photon energy (eV) 14.3 15.9 15.9 19.1[
β1 − 2

3
β3
]
0

0.141± 0.008 0.114± 0.008 0.057± 0.004 −0.030± 0.003
φ0 − ηp + ηs (rad) 1.70 ± 0.05 1.75 ± 0.06 6.28 ± 0.07 1.20 ± 0.11
β2 0.856± 0.010 1.631± 0.009 1.691± 0.005 1.784± 0.005
[β3]0 −0.574± 0.013 −0.810± 0.025 −0.439± 0.017 −0.723± 0.008
φ0 + ηd − ηp (rad) 2.84 ± 0.02 3.17 ± 0.03 1.28 ± 0.04 2.28 ± 0.01
β4 0.935± 0.013 1.028± 0.028 0.412± 0.009 1.010± 0.016
cs/cd (expt.) −0.330± 0.021 −0.189± 0.014 −0.174± 0.013 0.055± 0.006
cs/cd (theory) −0.295 −0.191 −0.191 0.070
ηs − ηd (expt.) (rad) 5.15 ± 0.06 4.87 ± 0.07 5.01 ± 0.08 5.21 ± 0.11
ηs − ηd (theory) (rad) 5.36 5.07 5.07 4.76
cp

2 : c2s + c2d 0.82 ± 0.01 : 1 1.44 ± 0.05 : 1 3.58 ± 0.06 : 1 1.55 ± 0.03 : 1
h 0.262± 0.006 0.360± 0.010 0.226± 0.008 0.318± 0.004
√
I2ω/Iω

(
10−9/

√
W/cm2

)
10.5 ± 0.1 13.4 ± 0.2 21.1 ± 0.2 13.0 ± 0.1

φ0 (rad) 5.07 ± 0.02 5.25 ± 0.03 3.38 ± 0.04 4.26 ± 0.01

TABLE II. Results of analysis of four experimental data sets at three different photon energies.

Table I. The results for cs/cd and ηs− ηd obtained using
Eqs. (6) and (8) are also given in Table II. These two
parameters agree well with theoretical values, confirming
that the present methodology works well.

Let us finally consider the other two parameters,

cp
2/(c2s + c2d) that is proportional to I2ω/I

2
ω and h that

scales the amplitudes of β1 and β3. To extract cp
2/(c2s +

c2d) and h from our experimental results, we optimize
those parameters by minimizing χ2 given by

χ2 =

([
βexp
1 − 2

3β
exp
3

]
0
−
[
βth
1 − 2

3β
th
3

]
0

)2
α2
1

+

(
βexp
2 − βth

2

)2
α2
2

+

(
[βexp

3 ]0 −
[
βth
3

]
0

)2
α2
3

+

(
βexp
4 − βth

4

)2
α2
4

, (9)

where [βexp
1 −2/3βexp

3 ]0, [βexp
3 ]0, and βexp

2,4 are the present
experimental values, and α1, α3, α2,4 are their respective
uncertainties (Table II), and βth are values calculated
from Eqs. (4)–(8) with theoretical values in Table I, re-
garding cp/cd and h as fitting parameters. The result-
ing values are also given in Table II. As noted above,
cp

2/(c2s + c2d) is proportional to I2ω/I
2
ω, so that we can

determine
√
I2ω/Iω, as given in Table II, employing the

theoretical ratio of cp
2/(c2s + c2d) in Table I.

In conclusion, we have demonstrated a method of de-
termining the absolute phase between two wavelengths in
a bichromatic XUV beam, as well as the coherent fraction
of the relative intensity. The determination of phase is

independent of the intensity of the two wavelengths. This
is useful for several purposes: experiments at a fixed pair
of wavelengths may require knowledge of the absolute
phase relationship between the two in order to interpret
the data, and this can be provided by adding He gas
to the target. If multiple, phase locked wavelengths are
used, the absolute phase can be extracted. Lastly, precise
knowledge of the absolute phase difference and intensity
ratio provides a far more rigorous basis for benchmarking
theoretical simulations of experimental data. An advan-
tage of the method is that it is applied at the experimen-
tal station, rather than at the exit of the FEL, so that any
alterations in phase difference introduced by beam trans-
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port are automatically included in the measurement.
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CEA-Saclay, 91191 Gif-sur-Yvette, France.
‡ kiyoshi.ueda@tohoku.ac.jp

[1] U. Becker and B. Langer, Physica Scripta T78, 13 (1998).
[2] H. Kleinpoppen, B. Lohmann, and A. N. Grum-

Grzhimailo, Perfect/Complete Scattering Experiments,
Springer (Berlin) (2013).

[3] P. Carpeggiani, E. V. Gryzlova, M. Reduzzi, A. Dubrouil,
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