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Optical chirality occurs when materials interact differently with light in a specific circular 

polarization state. Chiroptical phenomena inspire wide interdisciplinary investigations, which 

require advanced designs to reach strong chirality for practical applications. The development of 

artificial intelligence provides a new vision for manipulating of light-matter interaction beyond the 

theoretical interpretation. Here, we report a self-consistent framework named BoNet that 

combines Bayesian optimization and deep convolutional neural network algorithms to calculate 

and optimize optical properties of metallic nanostructure. Both electric field distributions at the 

near-field and reflection spectra at the far-field are calculated and self-learned to suggest better 

structure designs and provide possible explanations for the origin of the optimized properties, 

which enables wide applications for future nanostructures analysis and design.  

 

Chirality refers to a certain handedness in geometry with the structure mirror 

image that cannot coincide with itself [1-3]. Although optical chirality widely exists in 

nature, the chiroptical interaction is weak because of the mismatch between the size of 

natural materials and the visible wavelength. With the development of advanced 

nano-fabrication techniques, extraordinary structure designs were realized to achieve 

a strong optical chirality, such as planar spirals [4], antisymmetric bricks [5], 

gammadions [6,7], and three dimensional metamolecules [8], etc.. Automatic and 

efficient algorithms to optimize and calculate the optical chirality of those 
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nanostructures becomes more important for applications like sensitive detectors and 

effective spintronic devices.  

Machine learning algorithms provide an alternative view for scientific 

investigation and have played an important role in multiple research fields, such as 

high-energy particle detection [9], quantum entanglement simulation [10], 

semiconductor phase transition [11], and compound material designing [12, 13], etc. 

These algorithms were also adapted remarkably in nanophotonics, like resonant mode 

analysis [14,15], spectra calculation [16,17], and retrieval designing [18-21]. However, 

for the traditional parameterization process, all of the structure characters are 

transformed into feature vectors, where the direct geometric information and 

boundary condition of the structure are neglected, thus the physics interpretability and 

adaptability are seriously limited. A full picture of light-matter interaction is still 

challenging for machine learning algorithms. 

In this work, we present a self-consistent framework of BoNet [Bayesian 

optimization (BO) and convolutional neural network (CNN)] for self-learning optical 

properties of nanostructures in both near- and far-field which correspond to electric 

field distributions and reflection spectra, and use the BoNet to design nanostructures 

with optimized chirality in the reflection spectra. Recent advances of CNNs exhibit 

significant advantages of describing geometric patterns and extracting complex 

implicit features from pictures [22, 23]. BO, as a derivative-free optimization 

algorithm, is independent of the continuity or derivability of the objective function 

[24, 25]. By investigating designs of nanostructures as pictures, CNN is directly used 

to build the mapping relationship between the geometric characters of nanostructure 

patterns and target properties without solving complex Maxwell’s functions, which 

can significantly increase computation efficiency and achieve considerable accuracy 

for both spectra and electric-field calculation compared with numerical simulations. 

With performing BO to recommend a set of optimized inputs based on the current 

state of CNN model, these optimized inputs are used to reinforce the model. This 

process is iterated several times until the model converges to an allowable error. Then, 

the converged model is used to recommend optimized nanostructures. It is 
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demonstrated that BoNet is able to implement this efficient and practical platform for 

optical properties calculation and manipulation. 

The chiral material under investigation is complex thin-film Au nanoantennas 

composed of discrete Au cubes with fixed dimensions (10 × 10 × 40 nm3) positioned 

on a 40 ×40 square matrix the top of Si/SiO2 substrate. As shown in Fig. 1(a), a 

pattern comprised of three bricks is represented by a matrix where the area with Au 

cube (including overlapping part) is encoded as 1 and the empty area is encoded as 0. 

Under normal incidence of circularly polarized light, the reflection spectra and 

electric-field distributions of the complex nanoantennas are calculated by solving 

Maxwell’s equations with boundary conditions, which can be simulated by finite 

difference time-domain (FDTD) method. The goal of our approach is utilizing BoNet 

to predict both reflection spectra and electric-field distributions by training with 

FDTD numerical simulated data instead of solving Maxwell’s equations and 

automatically generate new structures with optimized spectra. 
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Figure. 1. a) Nanostructure parameterization. b) Schematic of BoNet for far-field spectrum 

calculation. c) Example structures for feature extraction. d-f) Geometric features extracted from 

convolution layers with the size of 40×40, 20×20, and 10×10. Boundaries of the pattern are 

extracted to compute the geometric features that relate with strong electromagnetic resonances. g-i) 

Vectors extracted from dense layers with the size of 256, 120 and 64 for spectra calculation. 

Spectrum information is gathered by decreasing number of feature vectors, and finally, the 

geometric features are transformed into a reflection spectrum. 

 

BoNet is firstly functionalized to bridge the relation between the structure 

geometry and its optical response. This network architecture includes two kinds of 

network layers, convolution layers, and dense layers. Convolution layers extract 

structure geometric features that are related to optical properties, as shown in Fig. 1(b) 
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and (c). On the other side, dense layers are used to map these features to the response 

of the reflection spectra.  

 

Fig. 1(d) exhibits geometric features extracted from the first block of convolution 

layers. These extracted features with area information contain boundaries of the 

pattern, which meets the fact that electromagnetic mode resonances depend on the 

structure boundary conditions. In the second convolution block, the features have less 

geometric characters but show more characters as electric field distributions [Fig. 

1(e)]. Shown as Fig. 1(f), a few hot spots with large value in the feature maps are 

reserved in the last convolution block, and are flattened into dense layers. After 

complicated calculations in dense layers, the intermediate layers exhibit few activated 

neurons in the size of 256 and 128 [Fig. 1(g) and (h)]. As the dimension reduces to 64, 

the spectral information is gathered, and more neurons with non-zero weights are 

utilized for the spectrum calculation [Fig. 1(i)]. 

 
Figure. 2. a) Schematic of BoNet for near-field calculation. b) Feature maps extracted from BoNet 

with the size of 20×20. c) Feature maps extracted from convolution layers with the size of 10×

10. d) Feature maps extracted from upsampling layers with the size of 10×10. e) Feature maps 

extracted from upsampling layers with the size of 20×20. f) Feature maps extracted from 

upsampling layers with the size of 40×40. For all feature maps in b-f), x-axis and y-axis locations 
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correspond to the geometric position of the nanostructure, and the normalized color-scales (from 

-1 to 1) show the output values of convolution layers. 

 

Upsampling layers perform three inverse convolution operations, which are 

connected with convolution layers for the calculation of near-field distribution [Fig. 

2(a)]. Feature maps from intermediate layers are shown in Fig. 2(b)-(f). Fig 2(b) 

shows that accurate geometric information such as lines and angles is collected from 

the first convolution layer. The smaller feature maps in Fig. 2(c) and (d) are used to 

design complicated characters as electromagnetic modes distributions. In Fig. 2(e), 

characteristic electromagnetic modes of the structure can be concluded in the 20×20 

layer, where the location of hot spots can be clearly pointed out. For the last 

convolution layer, as shown in Fig. 2(f), more detailed characters can be reconstructed 

and accurately calculated for the electric field distribution.  

To estimate the performance of BoNet, we randomly generate 10,000 samples 

and run FDTD simulations to provide corresponding optical properties including 

reflection and electric-field distribution. Considering the symmetries of boundary 

condition, the samples are augmented in 8 times (see supplementary S1) and divided 

into 3 parts: 80% for training, 10% for validation and 10% for testing. The loss 

function is defined as mean square error (MSE) between the outputs of FDTD 

simulation and BoNet. The optimization algorithm Adam (adaptive moment 

estimation with the learning rate of 0.001) is used to minimize the loss function [26]. 

After training 100 epochs, the well-built models can directly predict both the 

reflection spectra and electric-field distribution. The MSE for electric-field prediction 

is 0.048 for training data and 0.068 for validation and testing data, which is sufficient 

to predict electromagnetic mode distribution near the metallic structures and provide 

knowledge for nanoantennas design. For reflection spectra, training loss is 1.30×10-4, 

validation loss is 3.52×10-4 and testing loss is 3.74×10-4. Compared with traditional 

numerical simulations, BoNet directly predicts the character response by matrix 

transformation without solving the Maxwell equations, providing a rapid approach for 

calculating target properties (see supplementary S2).  
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Then, we iteratively use BO to enhance the CNN model. Firstly, BO is 

performed to optimize optical properties (Y), as the objective function of CNN, which 

means BO can recommend new parameters (X) with improved Y. However, in our 

system, CNN is originally trained by random examples with small Y value, thus 

samples with large Y value are hard for CNN prediction (see supplementary S3). 

Therefore, the second strategy is utilizing BO to improve the prediction accuracy for 

samples with large Y value. Based on the next generation of X, the corresponding Y is 

calculated by both CNN (YCNN) and FDTD (YFDTD). By validating the error between 

YCNN and YFDTD, the sensitivity of system can be evaluated. For system with strong 

sensitivity (large error between YCNN and YFDTD), samples with improved Y are added 

into training dataset and used to retrain CNN to improve the prediction accuracy (see 

supplementary S4, 5). During the loop of optimization, more FDTD validation 

improves calculation accuracy but slows down the speed. In the mission of designing 

nanostructure with optimized optical chirality, 20% of samples recommended by BO 

are evaluated by FDTD then used to extend the training dataset for improving the 

CNN.  

Optical chirality is widely applied in biosensors, detectors, and tunable 

optoelectronic devices [27-29]. Realizing strong optical chirality is important for high 

signal-noise-ratio device applications [30]. Here, we attempt to maximize the circular 

dichroism (CD) of designed structure by using the BoNet framework. To simplify the 

optimization process, the target wavelength is firstly fixed at 650 nm. Intermediate 

structures are plotted to illustrate the self-learning process of this CD enhancement, as 

shown in Fig. 3(a).  

Different colors are used to represent their comparative CD intensities. Brown 

structures are best designs for each generation, and their corresponding CD intensities 

are extracted as Fig. 3(b), where we can see the initial intensity is rather weak for the 

randomly generated structures as the first generation. For the second generation, the 

BO sampling strategy is an exploration operation to increase the variety of designs, 

since most of structures are still unknown and contribute to uncertainty in the 

parameter space. The calculated CD is steadily enhanced for latter generations with 
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the BoNet self-learning. As optimization continues, structures in fourth and fifth 

generations present more similarity. And BO sampling strategy changes to 

exploitation, which means the fine-tuning of structure parameters. After about five 

generations, the CD maximization at target wavelength of 650 nm is achieved and an 

almost perfect optical chirality is realized. 

 
FIG. 3. Far-field CD optimization. (a) Intermediate structures designed by BoNet with different far-field CD 

intensities in each generation. (b) CD intensities of best designs for each generations. (c) Statistical description of 

the BoNet self-learning process in each generation. (d) CD optimization at various target wavelengths. Insets: 

SEM images of structures with strongest CD at wavelength of 650, 700, 750 and 800 nm. (e) BoNet calculated and 

corresponding experimental far-field CD spectra at target wavelength of 650, 700, 750 and 800 nm. 

Statistical description of the BoNet self-learning process in each generation is 

also provided and shown in Fig. 3(c). The CD distribution is defined as the 

dependency between the CD intensity and the number of corresponding structures. 

The shape of CD distribution gradually changes from fusiform to dumbbell with the 



9 
 

calculated generations, which means the accuracy of BoNet calculation is improved, 

and more designed structures can present strong CD in the latter generations. Because 

neural network strongly depends on the training data, structure designs in early 

generations are automatically collected and used to re-train the CNN neurons. This 

recycle process extremely expands the knowledge region of CNN, and achieves an 

effective improvement for both target properties optimization and self-learning 

accuracy. More structures with strong CD are generated by BoNet to accelerate the 

parameter searching for the robust enhancement, which finally approaches the perfect 

optical chirality. 

BoNet is also adaptive for multiple parameters calculation. For example, the CD 

maximization can be also realized when we changed the target wavelength from 650 

to 800 nm, as shown in Fig. 3(d), where the CD increases steadily, and the perfect 

optical chirality can be achieved at different calculated generations for various target 

wavelengths. 

To validate the practical application of BoNet, the designed structures were 

fabricated by using E-beam lithography and characterized by reflection 

microspectroscopy (see supplementary S6). The measured CD spectra are plotted in 

Fig. 3(e), where the enhanced chirality at each target wavelength (solid line) agrees 

with the BoNet expectation (dashed line). The experimental acquired CD is about 

0.82 at target wavelength of 650 nm, the discrepancy between the measured result and 

calculation may come from the tolerance of sample fabrication and measurements. As 

the target wavelength changed to 800 nm, the measured CD decreases to ~0.5, which 

is resulted from the decreasing of incident light intensity and the attenuation of the 

polarizer extinction coefficient at the near-infrared regime. 

In order to explore the origin of this perfect optical chirality, five representative 

structures during the BoNet self-learning process were fabricated by using E-beam 

lithography and following lift-off process, shown as the SEM images in Fig. 4(a). The 

measured far-field CD spectra are plotted in Fig. 4(b), where we can see the first 

generated single brick structure exhibits an achiral background, which is used as the 

CNN training data for the next structure design. With the initial BoNet self-learning, 
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the second generated structure gives a rather flat spectrum with a weak CD intensity. 

However, the superiority of BoNet self-learning ability that merges both merits of BO 

and CNN rapidly makes the third promoted structure to present strong circular 

dichroism that is larger than 0.6 with its resonant wavelength close to 650 nm. Further 

optimization makes the CD increases to 0.7 at exactly the target wavelength of 650 

nm for the fourth generated structure. The last promoted structure with an almost 

perfect optical chirality at 650 nm is finally achieved, and with a strong CD in a wide 

spectral range.  

As we discussed before, BoNet can simultaneously calculate the near field 

distribution for the generated structure, which provides a detailed physics explanation 

for the origin of obtained strong CD. Given electromagnetic distributions in the 

near-field, the reflection spectra in the far-field can be calculated (see supplementary 

S2). For the CNN algorithm, the network for far- and near-field calculation shares 

convolutional layers for the electromagnetic character extraction. Once CNN is well 

trained, the relationship between the electric field distribution and structure geometry 

can be fully established, which enables further calculation of far-field spectra by the 

dense layer in the CNN algorithm. 

 
FIG. 4. Analysis of perfect optical chirality. (a) SEM images of structures in the optimization process at target 

wavelength of 650 nm. (b) Experimentally acquired CD spectra of five structures in (a). (c) The LCP component of 

CL mapping for the structures in (a) and corresponding BoNet calculated electric field distributions. (d) The RCP 

component of CL mapping for the structures in (a) and corresponding BoNet calculated electric field distributions.  

In order to study the detail of electromagnetic mode resonance, the 

cathodoluminescence (CL) spectroscopy with ultra-high resolution was used to 
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measure the optical near-field distribution of these nanostructures (see supplementary 

S6). Metallic nanoparticles are usually considered as optical antennas, and their 

near-field radiations have been confirmed can be described by the CL mapping 

[31-34]. All of the fabricated nanostructures were scanned by a focused electron beam, 

and corresponding excited CL emissions were recorded and to realize an intensity 

mapping. A set of band-pass filter and circular polarizer were used to extract either 

left- (LCP) or right-handed circularly polarized (RCP) CL component, as shown on 

the top of Fig. 4(c), (d), which has excellent agreement with the electric field 

distribution calculated by the BoNet and plotted at the bottom of Fig. 4(c), (d).  

From these CL mapping images, all of the electric field hot spots located at 

corners of the nanostructure can be clearly distinguished. For the first single brick 

structure, because of the mirror-symmetry, the energy flow from near-field radiation 

into the far-field is identical for the far-field scattering, which leads to an achiral 

background. However, when the hot spot distribution cannot overlap with itself under 

the rotation or mirror operations, the radiation of structure is diverse and results in a 

strong far-field CD. For example, the second generated structure shows five hot spots 

under LCP excitation, but only two hot spots exist when the excitation changed to 

RCP. For structures in latter generation, stronger difference of the hot spot distribution 

can be found under LCP or RCP excitation, and finally the structure with a perfect 

optical chirality is generated, where most of the energy is absorbed under RCP 

excitation, and it results in a nearly 100% CD in the far-field spectra. 

In conclusion, an intelligent self-learning platform named BoNet was proposed 

for the nanophotonic properties optimization. The distinctive self-consistent 

framework enables BoNet to self-learn the obtained properties and shows the ability 

for global optimization. In this work, BoNet was used to investigate both optical far- 

and near-fields for the perfect optical chirality. A theoretical CD maximum was 

achieved with a corresponding experimental result of 82% obtained in the far-field. 

The CL spectroscopy was applied to analyze the origin of this strong optical chirality, 

where the asymmetric distribution of the near-field hot spots under LCP or RCP 

excitation results in the strong far-field CD. 



12 
 

Furthermore, with more controllable parameters taken into consideration, the 

proposed BoNet platform can be used for any other nanophotonic structures with their 

specific applications. This probabilistic distribution based self-learning platform 

provides a new insight to analyze the design structure and its corresponding optical 

properties directly from the numerical data without solving Maxwell’s equations. This 

study can also inspire more applications of neural networks and machine learning 

algorithms for analysis of nanostructures, and improve the workflow of future 

nanophotonics studies. 
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