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Soft elastic filaments that can be stretched, bent and twisted exhibit a range of topologically and
geometrically complex morphologies that include plectonemes, solenoids, knot-like and braid-like
structures. Recently, a number of experiments have shown how to use these building blocks to cre-
ate filament-based artificial muscles that use the conversion of writhe to extension or contraction,
exposing the connection between topology, geometry and mechanics. Here, we combine numerical
simulations of soft elastic filaments that account for geometric nonlinearities and self-contact to map
out the basic structures underlying artificial muscle fibers in a phase diagram that is a function of
extension and twist density. We then use ideas from computational topology to track the intercon-
version of link, twist and writhe in these geometrically complex physical structures to explain the
physical principles underlying artificial muscle fibers and provide guidelines for their design.

The bending and twisting elastic response of soft filamen-
tous objects is a consequence of the geometric separation
of scales. This realization is at the heart of the classical
Kirchhoff-Love theory [1, 2] which considers inextensi-
ble, unshearable filaments and has spawned a substan-
tial literature [3, 4]. When such filaments are twisted
strongly, they deform into plectonemic structures that
consist of self-braided segments, and which have been ob-
served across scales, from DNA to metal wires [5, 6]. The
transition between the straight and plectonemic struc-
tures in inextensible filaments has been explored exten-
sively in both a deterministic and a stochastic setting
[7–10], and continues to be a topic of interest. However
filaments made of soft elastomeric materials are exten-
sible and shearable, and their study is interesting for a
range of applications such as biological tissue mechan-
ics, soft robotics etc. Amongst the simplest behaviors
that harnesses these modes of deformation is the con-
trolled transition between straight filaments and tightly
coiled helical shapes (solenoids), originally observed in
textiles [11], quantified experimentally in elastomers [12],
and then rediscovered in the context of heat-driven artifi-
cial muscles [13]. These energy harvesting devices rely on
the conversion of twist and bend into extension [14–16],
as solenoids untwist and stretch. Here we consider the
interplay between topology, geometry and mechanics in
strongly stretched and twisted filaments to explore the
range of morphologies seen and their functional conse-
quences.

We describe a filament by a centerline position vector
x̄(s, t) ∈ R3 (s ∈ [0, L0] is the material coordinate of the
rod of rest length L0 at time t), while the orientation of its
cross-section is defined by an initially orthonormal triad
associated with the director vectors d̄i(s, t), i = 1, 2, 3,
where d̄3(s, t) is normal to the material cross-section of

the filament. Then, the transformation of the body-fixed
frame (quantities without overbar) to the lab-fixed frame
(quantities with overbar) can be written in terms of the
rotation matrix Q(s, t) = {d̄1, d̄2, d̄3}−1 (see Fig. 1a).

In general, the centerline tangent ∂sx̄ = x̄s does not
point along the normal to the cross-section d̄3(s, t). The
deviation between these vectors characterizes local ex-
tension and shear σ = Q(x̄s− d̄3) = Qx̄s−d3 (Fig. 1a),
and is the basis of the Cosserat rod theory [3], that al-
lows us to include all six modes of deformation at every
cross-section (mathematically, this is associated with the
dynamics on the full Euclidean group SE(3)). The re-
striction to the Kirchhoff theory corresponds to the case
σ = 0, i.e. the normal to the cross-section is also the
tangent to the centerline, with x̄s − d3 = 0.

Since many soft materials are close to being incom-
pressible (i.e. the shear modulus is much smaller than
the bulk modulus), we assume the filament material to be
incompressible. Then, if e = |x̄s| is the elongation factor
and A is cross-sectional area, Ae is constant. This allows
us to use a simple materially linear constitutive law that
is a reasonable approximation to both neo-Hookean and
Mooney-Rivlin materials (see [17] and SI for validation
and [18–20] for alternative approaches [43]).

Then, we may write the linear and angular momentum
balance equations as [3, 4, 17]
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FIG. 1. Geometry and topology of soft extensible filaments.
(a) The filament centerline x̄(s, t) and local orthogonal frame
{d̄1, d̄2, d̄3}. Shear and extension are defined by the vector
σ = Qx̄s − d3, while curvature and twist are defined by the
vector k = vec(Q′QT). (b) Writhe (Wr) equals the cen-
terline’s average oriented self-crossing number, computed in
terms of the integral of the solid angle dΩ determined by the
infinitesimal centerline segments x̄(s1) and x̄(s2) (left-handed
intersections are negative). (c) Twist (Tw) is the integral of
the infinitesimal rotations dϕ of the auxiliary curve ā around

x̄s. Here the vector ā traced out by d̄
⊥
1 (i.e., the projection

of d̄1 onto the normal-binormal plane) is shown in red while
the curve associated with −d̄1 is shown in yellow (see Fig. 2).
For a closed curve Lk = Tw + Wr, where Lk (link) is the
average oriented crossing number of x̄(s) with ā(s).

the local angular velocity, k̄ = vec(∂sQ
TQ) is the local

strain vector (of curvatures and twist), S is the matrix
of shearing and extensional rigidities, B is the matrix
of bending and twisting rigidities, and f , c are the body
force density and external couple density (see SI or [17]
for details).

To follow the geometrically nonlinear deformations of
the filament described by the equations above, we em-
ploy a recent simulation framework [17], wherein the fil-
ament is discretized in a set of n + 1 vertices {x̄i}ni=0

connected by edges ēi = x̄i+1− x̄i, and a set of n frames
{Qi}n−1

i=0 . The resulting discretized system of equations
is integrated using an overdamped second order scheme,
reducing the dynamical simulation to a quasi-static pro-
cess, and accounting for self-contact forces, internal vis-
cous forces and the dynamic modification of the filament
geometry and stiffness (SI and [17] for details [44]) while
ignoring friction.

To track the knot-like structures that form when the
stretched and twisted filament can contact itself, we take
advantage of the CFW theorem [26, 27]: Link (Lk) =

FIG. 2. Variation of the link, twist and writhe as a func-
tion of the dimensionless twist density Φa (a is filament
radius in rest configuration). (a) To replicate the experi-
mental observations in [12], we use a constant vertical load
F≈25FC to produce a plectoneme (FC=π2EI/L2

0 is buck-
ling force for an inextensible rod (see Movie S1 and [35]).
(b) We repeat the simulation with F≈90FC , stretching the
filament to deformed length L≈1.16L0. Increased stretch-
ing leads to an overall similar conversion of twist to writhe
leading to tightly packed solenoidal structures (See Movie
S2 and SI for plots of filament energy). Simulation set-
tings (SI): length L0=1 m, a=0.025L0, Young’s modulus E=1
MPa, shear modulus G=2E/3, S=diag(4GA/3, 4GA/3, EA)
N, B=diag(EI1, EI2, GI3) Nm2.

Twist (Tw) + Writhe (Wr). Here, link is the oriented
crossing number (or Gauss linking integral) of the cen-
terline and auxiliary curve ā(s) (Fig. 1) averaged over all
projection directions [28], writhe is the link of the center-
line with itself [29], and twist denotes the local rotation
of the auxiliary curve about the centerline. In a discrete
setting, we compute writhe, link and twist of the filament
modeled as an open ribbon following [30], as illustrated
in Fig. 1 (see the SI for details).

When inextensible filaments are stretched and twisted,
a range of localized and self contacting structures arise,
and have been well studied in both a deterministic and
stochastic setting [9, 10, 31–34]. For highly stretched and
twisted filaments, the phase space of possibilities is much
richer, and in particular a new morphological phase as-
sociated with tightly coiled helices (solenoids) appears
[11, 12]. To characterize these morphologies, we simulate
twisting a filament clamped at one end and prestretched
by a constant axial load, finding that the resulting buck-
led state changes according to the magnitude of the load.
We first use an axial load ∼25 times the critical com-
pressive buckling force of a corresponding inextensible
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FIG. 3. Morphological phase space. We simulate a fila-
ment prestretched to L/L0 by a constant axial load and
twisted by an angle Φa, as in Fig. 2. By computing
centerline relative alignment in neighboring loops, we find
four phases: straight, plectoneme, solenoid and plectoneme-
solenoid combinations. Plectoneme alignment ≈−1, solenoid
alignment ≈1 and transition configuration alignments ap-
proach 0 (dark green). For L/L0 & 1.1 solenoids are
preferred. We expect Φcritical to scale linearly with L/L0

at high extension, in agreement with this plot. Our re-
sults agree qualitatively with experiments [12] (shown in
black dots, see SI for details). Hollow symbols denote plec-
toneme transitions while solid points denote solenoid tran-
sitions; different shapes correspond to different filament pa-
rameters (SI). Simulation settings (SI): L0=1 m, a=0.025L0,
E=1 MPa, G=2E/3, S=diag(4GA/3, 4GA/3, EA) N,
B=diag(EI1, EI2, GI3) Nm2.

filament FC=
(
π2EI

)
/L2

0. In Fig. 2a, denoting by a the
filament rest configuration radius, we show that when
a critical dimensionless twist density Φa is reached, the
filament becomes unstable to bending, leading to the for-
mation of a plectoneme, converting twist to writhe; occa-
sionally the plectoneme can partially untie itself by slip-
ping a loop over an endpoint, allowing link to escape the
system (Fig. S3). In Fig. 2b, we repeat the simulation but
quadruple the stretching strain and see that at a critical
value of Φa, the filament again becomes unstable to bend-
ing, but now leads to a qualitatively different equilibrium
configuration: a tightly coiled helical solenoid. We note
that substantial prestretch is the crucial prerequisite for
solenoid formation, while shearing is found to be unim-
portant (see SI for details). While both plectonemes and
solenoids convert twist to writhe in steps, they are other-
wise quite different. Plectonemes lead to braids made of
oppositely chiral helices, while solenoids lead to a single
compact helix. Furthermore, a plectoneme loop converts
much more twist to writhe than a solenoid does as it
coils up (Fig. 2). However the tightly-coiled nature of
the solenoidal coil makes it more stable under stretching.

We now turn to explain the experimental observa-
tions and morphological phase diagram that span the
twist density-extensional strain (Φa)-(L/L0) phase space
[12] (L is stretched filament length). Using randomly-

sampled twist densities and extensions in this phase
space, we classify each resulting configuration on the
spectrum from plectoneme to solenoid using the av-
erage relative alignment of tangent vectors at fila-
ment segments which are adjoining in absolute co-
ordinates but separated in material coordinates, i.e.
avgni=1

(
sign(ēi · ēk)

)
where k=argmin (|x̄k − x̄i|) sub-

ject to |k − i|> 5na
L0

and |x̄k − x̄i|<(2 + ε)a, with ε=0.2
(empirically determined to maximize classification accu-
racy). Plectoneme loops involve two strands entwined
in antiparallel directions (alignment→−1), while seg-
ments of adjacent solenoid loops tend to lie parallel
(alignment→1), and straight segments do not contribute
to the average. In Fig. 3 we show four qualitatively dif-
ferent filament configurations: rectilinear, plectoneme,
solenoid, and a mixed state with features of both plec-
tonemes and solenoids; indeed the distinction between
solenoid and plectoneme becomes blurred near the triple
point. These simulations agree qualitatively with experi-
mental observations [12], as illustrated in Fig. 3; the small
quantitative discrepancy between experiments and simu-
lations is likely due to our neglect of friction. It is worth
pointing out that the region of solenoid-plectoneme co-
existence can be expanded by having an active agent (for
example, a DNA-binding enzyme) capable of either re-
laxing the internal axial tension and/or inducing excess
twist in the filament locally. This allows for the forma-
tion of a plectoneme in the compressed segment, after
which, upon further twisting, a solenoid forms below the
lifted point (Fig. S9 and SI), with similarities to loop
formation in chromosomes [36–38].

Our results also explain earlier observations [11]
that describe straight-plectoneme-solenoid transitions in
terms of varying twist density, and correspond to trac-
ing horizontal and diagonal paths through the present
extension-twist density phase diagram (see SI). Indeed,
horizontally exiting the solenoid region in Fig. 3 to the
right, by gradually displacing the lower solenoid endpoint
away from the top, leads to a step-like solenoid loss pro-
cess. We track the required force and resulting change
in writhe (Fig. 4a). The solenoid remains mostly coiled,
resisting stretching with a linear force-displacement rela-
tion, until a critical displacement at which it uncoils by
one pitch and the process starts again. This stepwise
uncoiling stems from a kinematic competition similar
to solenoid formation: stretching the filament increases
the energy required to maintain a constant number of
coils. The simulated sawtooth force-displacement pat-
tern agrees qualitatively with experiments [12].

We now turn to use our results to quantitatively ex-
plain a series of recent experiments on twisted fiber-based
artificial muscles [13, 39–41] that exploit the connection
between twist, writhe and link in a mechanical context.
The basic mechanism is associated with the formation
of solenoids in highly stretched filaments that are exter-
nally twisted [11, 12] - this leads to an increase in writhe,
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FIG. 4. Actuation of fiber-based artificial muscles that use the straight-solenoid transition. (a) Passive extension via solenoid
loss. (a) We displace the unclamped end x̄n of a solenoid formed as in Fig. 3 with a load ≈99FC load a distance ∆U in the
direction x̄n − x̄0 and plot force on x̄n, qualitatively reproducing experiments [12] (inset–see Movie S13). Simulation settings
(SI): L0=1 m, a=0.025L0, E=1 MPa, G=2E/3, S=diag(4GA/3, 4GA/3, EA) N, B=diag(EI1, EI2, GI3) Nm2.(b) Active work
done by changing temperature which effectively increases filament rigidity, here simply modeled by increasing the Young’s
modulus E of the material. This leads to the formation of a solenoidal loop in a stretched twisted filament as in Fig. 3 with a
load ≈116 FC as E0 increases gradually from 1 MPa, showing displacement ∆U of x̄n and increase in writhe ∆Wr from initial
coil writhe, reproducing experiments [13] (inset–see Movie S3). (c) Contraction of twisted and coiled nylon polymer muscle
formed by inserting twist and annealing into helix. Filament radius doubles from initial radius a0=0.01 m while twist decreases
to keep ak3 constant. Numerical slope and onset of self-contact (shown as point) agree closely with experimental results [13]
(see SI for details). Beyond self-contact, radial growth pushes adjacent loops farther apart leading to helix elongation. Note
that ∆Tw+ ∆Wr < 0 in the inset; Indeed, link escapes from the free boundary due to revolution of the free filament endpoint
around the helix axis, reducing the number of loops in the helix (see Fig. S7, Movies S4, S5). Simulation settings (SI): L0=1 m,
a=0.025L0, E=30 GPa, G=2E/3, S=diag(4GA/3, 4GA/3, EA) N, B=diag(EI1, EI2, GI3) Nm2. Note that pitch P , α=100,
number of loops and helix radius determine L0.

causing the filament to shorten and do work against ex-
ternal loads. In the twisted fiber-based artificial muscles
of [13, 39, 41], the externally induced twist is replaced by
the use of a scalar field, temperature, that drives varia-
tions in the radius and stiffness of a pre-twisted filament
and causes it to untwist, producing an equivalent increase
in writhe. In Fig. 4b, we simulate this in a minimal set-
ting by showing the effects of (temperature-induced) in-
crease in the elastic modulus of a pre-stretched, twisted
and loaded filament. To increase writhe, the solenoidal
state progressively invades the straight state, lifting its
lower endpoint toward the clamped end, qualitatively re-
producing experimental observations of the linear actua-
tor [13].

The sheath-run artificial muscles [39] work similarly
by relying on the conversion of untwist to writhe, while
the strain-programmable artificial muscles [40] generate
a tensile stroke via temperature-induced differential ex-
pansion in a bilayer, that is tantamount to changing the
natural curvature of a filament dynamically. Finally, the
torsional actuator [41] generates torque by inserting twist
into a filament and then quickly lowering the filament’s
intrinsic twist until it vanishes. Rather than replicate all
the different variants of the fiber-based artificial muscles,
here we limit ourselves to just two simple cases: the lin-
ear actuator [13], and the rotary or torsional actuator
[41].

To capture the mechanics of the linear actuator, we
initialize a filament with intrinsic twist and numerically
anneal the filament into a uniform coil with space be-
tween adjacent loops, replicating the plastic deforma-
tion process by which twisted and coiled polymer mus-

cles are formed. The fibers used in [13] expand ra-
dially and contract axially when heated; however, as
noted quantitatively in [42], considering radial growth
with fixed fiber length is sufficient. While our model ap-
plies to an isotropic filament, we can simulate anisotropic
expansion-driven untwist by following the mechanical
analogy in [13]: imagine winding an inextensible string
around a fiber, attaching it on both fiber ends. To keep
the length of the string constant, the fiber would have to
untwist to expand. Mathematically, this requires ak3 to
stay constant. Hence, we prescribe a radial growth rate
and continuously update the intrinsic twist k̂3 to keep
ak̂3 constant [45]. For a homochiral coil the resulting un-
twist leads to contraction (Fig. 4), but in a heterochiral
coil untwisting leads to elongation (Fig. S8, Movie S6,
S7). In Fig. 4c we show the change in Wr and contrac-
tion for a simulated coil with initial inserted twist density
of 2 rot/m. We scale simulated filament parameters to
increase simulation efficiency and show contraction over
equivalently-scaled twist density, denoting the scaling pa-
rameter by α=100. Both coils contract at the same scaled
rate as experiments until adjacent loops come into con-
tact (see SI for details of varying P/a0). To capture the
mechanics of the rotary actuator, we initialize the fila-
ment with intrinsic twist which is rapidly decreased to
mimic the effect of annealing via heating. This leads to
rotary motion (see section S7, movie S14).

All together, our study links topology, geometry and
mechanics to explain the complex morphology of soft,
strongly stretched, twisted filaments, and quantify recent
experiments on artificial muscle fibers, setting the stage
for the study of complex braided, knotted and twisted
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filament configurations in a range of new settings.
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