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Active particles such as swimming bacteria or self-propelled colloids spontaneously self-organize
into large-scale dynamic structures. The emergence of these collective states from the motility
pattern of the individual particles, typically a random walk, is yet to be probed in a well-defined
synthetic system. Here, we report the experimental realization of tunable colloidal motion that
reproduces run-and-tumble and Lévy trajectories. We utilize the Quincke effect to achieve controlled
sequences of repeated particle runs and random reorientations. We find that population of these
random walkers exhibit behaviors reminiscent of bacterial suspensions such as dynamic clusters and
mesoscale turbulent-like flows.

Microswimmers such as motile bacteria and active col-
loids individually perform random walks, but collectively
move in much more complex fashion [1–3]. E. coli , for ex-
ample, run-and-tumbles by executing persistent straight
runs interrupted by random changes in the direction of
motion, and in a dense suspension generates turbulent-
like flows [4–6]. Diverse bio-motility strategies have in-
spired great interest in the engineering of artificial self-
propelled particles that mimic the elaborate locomotion
patterns and collective behaviors of their biological coun-
terparts [7–11]. Most available experimental designs of
artificial colloidal microswimmers perform active Brow-
nian motion [12–21], where the reorientation in the di-
rected motion is driven by the rotational diffusion of the
swimmer. This results in slow and continuous directional
changes, in contrast to the sudden turning events charac-
teristic of the run-and-tumble bacteria. Efforts to emu-
late the kinetics of the bacterial run-and-tumble motions
[22, 23] have been unable to achieve truly random reorien-
tation events. Only recently, reorientation disentangled
from rotational diffusion has been accomplished by us-
ing viscoelastic fluid as a suspending medium [24], but
control over the walk characteristics was limited.

Here we report the experimental realization of a motile
colloid, inspired by the Quincke roller [25–27], that per-
forms finely–tunable, diverse random walks such as run-
and-tumble or Lévy walks. This Quincke random walker
enables the experimental study of active fluids emulating
bacterial suspensions under well defined and controllable
conditions e.g., particle density, speed (i.e., activity) and
locomotion type. A population of the Quincke random
walkers display collective dynamics reminiscent of bac-
terial suspensions such as self-organization into swarms
and various dynamic clusters.

The colloid “run” is powered by Quincke rotation, i.e.,
the spontaneous spinning of a particle polarized in a uni-
form direct current (dc) electric field [28] (see Fig. 1a
and Supplemental Material [29] for a detailed descrip-
tion of the phenomenon). If the sphere is on a surface, it

rolls steadily following a straight trajectory. The Quincke
rollers have stirred a lot of interest since they were discov-
ered to undergo collective directed motion [25, 26, 30, 31].
Our strategy to introduce a “tumble” in the colloid tra-
jectory exploits a unique feature of the Quincke insta-
bility: the degeneracy of the rotation axis in the plane
perpendicular to the applied electric field (and parallel to
the rolling surface). A sequence of on-off-on electric field
causes the sphere to roll-stop-turn; the turn is due to the
Quincke instability picking a new axis of rotation. One
caveat, though, is that the charging and discharging of
the particle occurs by conduction and require finite time.
The induced dipole P evolves as [32]

∂P

∂t
= Ω×P− τ−1

mw (P− χeE) . (1)

where Ω is the rotation rate and χe is the electric sus-
ceptibility of the particle. The characteristic time scale
for polarization relaxation is the Maxwell-Wagner time
τmw = (εp + 2εs)/(σp + 2σs), which depends solely on
the fluid and particle conductivities and permittivities,
σ and ε. Random reorientation after each run is only
ensured if the sphere is completely discharged before the
field is turned on. Incomplete depolarization acts as a
memory and correlates subsequent runs. Thus the relax-
ation nature of the polarization adds another functional-
ity to the Quincke walks: variable degree of run correla-
tion. Furthermore, since the Maxwell-Wagner “memory”
time scale depends solely on the fluid and particle elec-
tric properties it can be tuned by adding surfactants to
the oil [27].

Experimentally, we apply external electric field by de-
signing a sequence of electric pulses with duration τR and
spaced in time by τT to dielectric (polystyrene) micron-
sized spheres (diameter 40 µm) settled onto the bottom
electrode of a chamber filled with oil (hexadecane+ AOT,
τmw ∼ 2 ms) (Fig. 1a) [27]. As predicted, various tra-
jectories are realized depending on the degree of depolar-
ization, i.e. τT /τmw (Fig. 1b-d). If τT ≫ τmw, particle
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FIG. 1. (a) Quincke random walker: In a uniform direct current electric field E, free charges brought by conduction accumulate at
the particle surface. For E values above the threshold for Quincke rotation, a spontaneous symmetry breaking of the charge distribution
gives rise to a net torque and the sphere rolls about a randomly chosen axis in the plane perpendicular to the applied field direction. If
a square-wave electric field is applied with period between the pulses longer than the time needed for the sphere to depolarize (Maxwell-
Wagner time), the sphere executes a random walk. (b-d) Quincke walker trajectories at different τT /τmw ratios, with τR = 0.15 s. Particle
stops are marked with red circles. Insets: (left) tumbling angle distribution, (right): log-log plot of time-averaged experimental (symbol)
and theoretical (solid line) mean-square displacement (crossover marked by the vertical dashed line at t = τR). (e) persistence index α
for different τT /τmw ratios. (f) Run velocity depends solely on the amplitude of the applied electric field. Symbols: measured velocity
at different amplitude and frequencies 1/(τR + τT ) of the applied pulsed signal; Solid lines: velocity measured in dc fields. (g) particle
velocity for 1 second duration of the pulsed signal, τT /τmw = 20, τR = 0.15 s. E=1.66 MV/m.

polarization relaxes completely and full randomization
of the consecutive run directions is accomplished. As
the particle trajectory and tumbling angle distribution in
Fig. 1b show, run and turn phases are independent and
the particle undergoes an unbiased and uncorrelated ran-
dom walk. The time-averaged mean-square displacement
of individual trajectory in Fig. 1b and also the ensemble
average of multiple realizations (Fig. S3) show excel-
lent quantitative agreement with the theoretical predic-
tions (summarized in the Supplementary Material). The
transition from a ballistic to diffusive motion occurs at
time t ∼ τR and the long-time behavior (t≫ τR) follows
V 2τ2Rt/(τR + τT ). Typical run velocities V ∼1 mm/s re-
sult in an effective diffusion coefficient on the order of
few mm2/s, quite large for a microswimmer. As τT ap-
proaches τmw, the colloid motion starts to exhibit some
local directional bias, manifested by the emergence of a
peak at tumbling angle of zero, see Fig. 1c,d. Eventually
the random walk vanishes completely and the particle
undergoes a persistent directed motion (Fig. 1d). The
trajectory is curved instead of a straight line because par-
ticle density is not uniform. The transition from the un-
correlated random walk to directed motion is illustrated
in Fig. 1e by the persistence index α = 〈cos(∆θ)〉, which
quantifies the average change in the direction of motion
after a run. ∆θ is the angle between two consecutive
run segments and 〈.〉 is the average over all reorienta-
tion events. The sharp transition around τT /τmw ∼ 2
highlights the fact that complete depolarization and re-
polarization, each occurring on time scale ∼ τmw, are

necessary for randomization of direction of motion. Thus
in our design for a random walker, any resting time τT
sufficiently larger than τmw guarantees full randomiza-
tion. At τT /τmw ∼ 2.9, the correlated run of the particle
results in a persistence index of α = 0.345, close to the
run-and-tumble locomotion of E. coli [33].

The average run velocity is independent of the fre-
quency of electric field signal and is equal to the veloc-
ity with which the particle cruises at time-independent
dc field with the same magnitude(Fig. 1f). Therefore,
run velocity can be controlled by the amplitude of the
applied signal. Closer inspection of the particle motion
shows that the particle follows the applied electric signal
during the run and rest phases (Fig. 1g and Fig. S2).

Run-and-Tumble and Lévy walks: We now proceed to
construct more complex locomotion patterns. In run-
and-tumble walk, the run times are exponentially dis-
tributed, ψR = 1/τ̄e−t/τ̄ , where τ̄ is the mean value for
the run times [34]. For a Lévy walk with resting periods
[35], ψR = γtγ0t

−(1+γ)H(t − t0), where τ̄ = t0γ/(γ − 1)
[34], where H is the Heaviside function and t0 is the
lower cutoff value for run times. The power 1 < γ < 2
controls the degree of anomalous super-diffusion mani-
fested at long times. In both cases, the turning time τT
and run velocity V are constant. We randomly draw run
times τR from ψR (Fig. 2a,f) and encode these times as
pulse durations in the electric signal (sample signals are
shown in Fig. S4).

Sample trajectories of the Quincke roller performing
a run-and-tumble motion and Lévy walk are shown in
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FIG. 2. Top row: Run-and-tumble, Bottom row: Lévy walk; (a,f) distribution of run-time τR drawn from an exponential and power-law
PDF. (b,g) trajectory of the Quincke walker performing a run-and-tumble and Lévy walk. (c,h) time-averaged mean-square displacement.
Symbols: experiment, Solid line: theory, Vertical dashed line marks τ . (d,i) normalized velocity autocorrelation function, Symbols:
experiment, Solid line: theoretical exponential- and dashed line -theoretical power-law decay. Inset: same in log-log scale plot. (e,j) Run
length vs. the corresponding run time τR. Symbols: experiment, Solid line: linear fit showing a constant run velocity of V = 1.73 mm/s
for Run-and-Tumble and V = 0.84 m/s for Lévy walk. E= 1.83 MV/m for run-and-tumble and E= 1.5 MV/m for Lévy walks. For both
run-and-tumble and Lévy walk: τ = 0.075 s, τT /τmw = 20. γ = 1.7 for Lévy walk.

Fig. 2b,g (also Movie S1). The measured time-averaged
mean squared displacement of an individual trajectory,
Fig. 2c, and the ensemble average of multiple realiza-
tions, Fig. S5, display a transition from the initial ballis-
tic regime for times shorter than τ to final normal diffu-
sion with a linear scaling with time in the case of run-and-
tumble. The experimental results are in excellent agree-
ment with the theoretical prediction [34]. The MSD for
Lévy walk, Fig. 2h (see also Fig. S6), exhibits superdif-
fusion consistent with the theoretical scaling of t3−γ (Eq.
S9). The experimental velocity auto-correlation function
VACF shown in Fig. 2d decays sharply in the case of
run and tumble motion, in agreement with the theoreti-
cal predictions (Eq. S10). For Lévy walk, VACF exhibits
a tail (Fig. 2i), as predicted theoretically (Eq. S11), and
is poorly fitted by an exponential curve. This, plus the
fact that particle’s displacement follows the desired dis-
tribution, corroborates that the walker undergoes a Lévy
walk. The run length (Fig. 2e,j) linearly depends on the
corresponding run times, which confirms that the walker
runs at almost constant speed.
Collective dynamics: A population of Quincke random

walkers exhibit various collective dynamics illustrated in
Fig. 3 for the case of a simple walk. The collective states
emerge from any initial random state, reaching steady
state typically within a minute. At a given particle den-
sity, depending upon the run time τR and the degree of
depolarization τT /τmw (“memory”), the Quincke colloids
self-organize into different dynamical phases at (statis-
tically) steady-state with distinct statistical properties,

e.g., the spatial two-point correlation function S2, ve-
locity auto-correlation function Cvv, and the polar order
parameter ΦO (see Fig. 4a-c and Supplementary Ma-
terial for cluster identification criteria and definitions of
cluster statistics). The classical, run-only Quincke rollers
[25] correspond to τT /τmw = 0.
If the colloid run directions are correlated due to signif-

icant memory effect (τT /τmw < 2), particles form swarms
similar to those observed in dc limit [25, 26] (Movie S2).
The fast-decay of S2 in Fig. 4a and the corresponding
characteristic length scale LS2

of a few particle diame-
ter d, (LS2

defined as the length where S2 crosses the
horizontal line corresponding to the r → ∞ limit), in-
dicate lack of connectivity or large scale clustering of
the particles. However, swarms show long-range veloc-
ity correlations and high polar ordering, see Fig. 4b,c.
Increasing τR, while keeping τT /τmw below 2, leads to
the emergence of stable rotating clusters (Movie S3),
with (periodic) long-range spatial pair and velocity cor-
relations. These structures likely arise from the com-
plex interplay of hydrodynamic and electrostatic inter-
actions between the Quincke walkers. While swarms are
attributed to pair-aligning interactions [25, 26, 36], a re-
cent model suggests that a competing anti-aligning inter-
action can lead to rotating clusters [37]. As the memory
effect fades, τT /τmw > 2, the stationary rotating clus-
ters transition into mobile elongated clusters composed
of smaller number of particles. At small to intermedi-
ate values of τR, particles form stable large polar clusters
(Movie S4) with long-range velocity and orientational or-
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FIG. 3. (a) Collective states formed by Quincke random walkers with different run and turn times (τR, τT ). Symbols indicate the
experimentally observed ⊳: static clusters, △: swarm (SW), ◦: rotating clusters (RC), �: polar clusters (PC), and ∗: disordered clusters
(DC). (b) Snapshots of the SW (τT /τmw = 0.5,τR = 4 ms), RC (τT /τmw = 1.5,τR = 5 ms), PC (τT /τmw = 3,τR = 8 ms) and DC
(τT /τmw = 10,τR = 40 ms) phases from the experiments. Scale bar is 1mm. Velocity vectors are superimposed to the particles. Particle
area fraction and pulse amplitude are constant in all experiments and are equal to φ ≈ 0.15 and E= 2.08 MV/m, respectively.
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FIG. 4. (a) Angular-averaged normalized two-point correlation vs. normalized radial distance r; top inset: in 2D, showing the spatial
periodicity of rotating cluster; bottom inset: characteristic length of S2. Angular-averaged velocity auto-correlation vs. normalized radial
distance; top inset: in 2D, showing the periodicity of velocity correlation of rotating and polar clusters in space. Some degree of anisotropy
in the velocity auto-correlation of polar cluster is due to insufficient number of clusters in the field of view; bottom inset: characteristic
length of Cvv. (c) Polar order parameter vs. n, the number of particles in a cluster; inset: global order parameter; shaded areas indicate
polar ordering higher than 75% and lower than 15%. (d) Probability distribution of clusters with n number of particles. (e) VACF of a
disordered cluster with τR = 100 ms evaluated at different run steps. Inset: Angular-averaged energy spectrum of disordered clusters.
Symbols denote different phases: �: polar cluster (PC) (τT /τmw = 3,τR = 8ms), ∗: disordered cluster (DC) (τT /τmw = 10,τR = 40ms), ▽:
disordered cluster (τT /τmw = 10,τR = 100ms), ⋆: disordered cluster (τT /τmw = 10,τR = 150ms), △: swarm (SW) (τT /τmw = 1,τR = 4ms)

der (shown in Figs. 4a-c) which cruise over the whole
domain without significant exchange of particles. Upon
further increase of τT and τR, the giant polar clusters
break up by exchanging outermost particles, which start
performing independent random-walks. This results in
a more continuous spectrum of cluster size distribution
at steady-state, with large clusters being orientationally
decorrelated, see Fig. 4c,d. The resulting disordered
clusters are highly dynamic: they continuously evolve,
deform and break by exchanging particles (Movie S5).

The cluster size distribution in Fig. 4d shows a kink
at large particle size n, which can be fit by P (n) ∼
c1n

b1e−n/nc1 + c2n
b2e−n/nc2 , whose scalings agree well

with dynamic clustering in bacterial suspension and dis-
crete particle simulations [38–40]. The particle number
fluctuations ∆N scales with the average particle numbers
〈N〉 (in windows of different linear size)as ∆N ∼ 〈N〉a,
with exponent a ∼ 0.85 (see Fig.S7), larger than the one
for fluctuations in thermal equilibrium a = 0.5. Further-
more, cluster mean velocity increases with the size of the
cluster and plateaus beyond certain cluster sizes (see Fig.
S8), similar to [38]. The angular-averaged velocity auto-

correlation of disordered clusters in Fig. 4e shows anti-
correlation around r/d ≈ 10 − 20, which is a signature
for the formation of vortical structures, similar to those
observed in different bacterial systems [41–45]. The cor-
responding energy spectrum calculated from the velocity
field of the particles shows scaling of −8/3 (see also Fig.
4e), which is in agreement with mesoscopic turbulence
in bacterial suspension [44], discrete particle simulations
[46], and also in numerical simulations for suspension of
pushers in a Newtonian fluid [47]. The quantitative sim-
ilarity of the cluster and flow statistics of bacterial and
Quincke walker clusters may originate from a unique fea-
ture of the Quincke random walkers: when the field is
on, they all run and when the field is turned off, they
all stop. This de facto synchronization of the runs and
turns mimics the fact that in dense suspensions, bacteria
do not swim independently due to mechanical locking of
flagella [38, 48].

In conclusion, the Quincke random walker provides a
well–defined experimental system to study active fluids
emulating bacterial suspensions.In this work we only fo-
cused on the effects of the simple walk and its character-
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istics (run and turn times) on the collective dynamics at
moderate particle density. Exploration of the complete
phase space will likely uncover more complex collective
states. While we only investigated the constant speed
motility, the Quincke random walker can be easily pro-
grammed for runs with a general time-varying speed [49]
and locomotions with distributed waiting times featuring
anomalous subdiffusion. Our approach can also be used
to randomize the motion of other active particles pow-
ered by the Quincke effect such as the recently proposed
helical propeller [50] and use this microswimmer to ex-
plore self-organization in three-dimensional suspensions.
We envision the Quincke random walker as a new ex-
perimental platform to explore active locomotion at the
microscale and a testbed for the abundant theoretical
models of the collective dynamics of active matter.

This research has been supported by NSF awards
CBET-1704996, DMS-1716114, and CMMI-1740011.
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