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The optical memory effect has emerged as a powerful tool for imaging through multiple-scattering
media; however, the finite angular range of the memory effect limits the field of view. Here, we
demonstrate experimentally that selective coupling of incident light into a high-transmission channel
increases the angular memory-effect range. This enhancement is attributed to the robustness of the
high-transmission channels against perturbations such as sample tilt or wavefront tilt. Our work
shows that the high-transmission channels provide an enhanced field of view for memory effect-based
imaging through diffusive media.

‘Seeing through an opaque medium’ has long been a
grand challenge, as ballistic light decays exponentially
with depth. Various techniques have been developed to
extract the weak signal from single/few scattering in an
overwhelming background of multiply-scattered light [1–
5]. A recent paradigm shift is harnessing multiply-
scattered or diffused light for imaging applications [6–11].
The key ingredient that enabled this strategic shift is the
hidden correlations of seemingly random speckles formed
by the interference of scattered light [12–16]. Quite re-
markably, such correlations have been both predicted and
observed in the angular, spectral, spatial, and temporal
domains [17–30].

Perhaps the best known from all of the above corre-
lations is the angular ‘memory effect’: when the inci-
dent wavefront of a coherent beam on a diffusive medium
is tilted by a small angle, the transmitted wavefront is
tilted by the same amount, resulting in the translation
of the far-field speckle pattern [25–29] (see Fig. 1(a)).
The angular memory effect originates from the intrinsic
correlations in the transmission matrix t of a diffusive
slab with a width W that is much larger than its length
L [27, 29, 30]. In real space, t is a banded matrix, be-
cause a point excitation at the front surface emerges as
a diffuse halo of radius L at the back surface of the slab.
In the spatial-frequency domain, t displays correlations
between the matrix elements along the diagonal. The
diagonal correlations are the origin of the memory effect
with an angular correlation width θ0 = λ/(2πL), where
λ is the wavelength of light. While the memory effect has
already enabled various applications in imaging [12–16],
its limited angular correlation width remains a central
obstacle for wide-field imaging.

A recent breakthrough in coherent control of light in
diffusive media is the selective excitation of transmission
eigenchannels by wavefront shaping [31–35]. It allows
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not only to vary the transmittance from near zero to the
order of unity, but also to drastically change the spatial
distribution of energy density inside the medium [35–40].
Moreover, it has very recently been discovered that in
a wide diffusive slab, the transmission eigenchannels are
localized in the transverse directions and have the same
transverse width at the front and the back surfaces of
the slab (i.e. there is no transverse spreading) [41, 42].
Since the transverse spreading of scattered waves is inher-
ently connected to the theory behind the angular mem-
ory effect, the absence of spreading immediately raises
the question whether and how the angular memory effect
is modified for transmission eigenchannels and whether
one could make use of such modifications to increase the
angular memory-effect range.

In this Letter, we investigate this question experimen-
tally and numerically by studying the angular memory ef-
fect of transmission eigenchannels in wide diffusive slabs.
Compared to random incident wavefronts, we find that
the angular memory-effect range is enhanced for high-
transmission channels, but reduced for low-transmission
channels. These phenomena can be explained by the ro-
bustness of the transmission eigenchannels against sam-
ple tilt or incident wavefront tilt. Our work illustrates
the significance of high-transmission channels in memory-
effect-based imaging applications: they not only pen-
etrate deeper inside a diffusive medium, but also pro-
vide a wider field of view due to their enhanced angular
memory-effect range. Furthermore, we observe the op-
posite behavior in reflection, where the angular memory-
effect range is reduced for high-transmission channels but
enhanced for low-transmission channels. This result sug-
gests that the angular memory-effect range of reflected
light may be used as a signature of coupling light into
high-transmission channels in experiments where there is
no access to the light field behind scattering media [43–
45].

Experimentally we measure the angular memory ef-
fect by selectively coupling coherent light into a single
transmission eigenchannel. The scattering sample con-
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FIG. 1. Angular memory effect, the experimental setup, and
data. (a) Sketch of the angular memory effect for a diffu-
sive slab. An incident beam generates a transmitted speckle
pattern in far field (green). When the input wavefront is
tilted by a small angle θ, the output wavefront is tilted by
the same angle θ, leading to a lateral shift of far-field speckle
pattern (red). (b) Simplified schematic of the experimental
setup. The laser beam is modulated by a phase-only SLM,
imaged onto the pupil of a microscope objective by a pair of
lenses, and directed onto a ZnO nanoparticle film. The trans-
mitted (reflected) light is measured by a CCD camera CCD1
(CCD2) in the far field. NA and P stand for numerical aper-
ture and linear polarizer, respectively. (c) Experimentally
measured intensity correlation function C(θ) of the transmit-
ted speckle patterns as a function of the normalized tilt angle

θ/θ
(r)
0 , for a high-transmission channel (with T/T = 2.29, blue

dashed line), a low-transmission channel (with T/T = 0.58,
red dot-dash line), and a random incident wavefront (black

solid line). θ
(r)
0 denotes the width of C(θ) for the random

wavefronts where C(θ
(r)
0 ) = C(0)/2, and its value is about 1°.

sists of densely-packed zinc oxide (ZnO) nanoparticles
spin-coated on a cover slip. The thickness of the ZnO
layer L ' 10 µm is much smaller than its transverse di-
mensions (2 cm × 2 cm). Since the transport mean free
path lt ' 1.5 µm is much shorter than L, light transport
in the sample is diffusive. The measured transmittance
averaged over random incident wavefronts is T ' 0.2.

To find the transmission eigenchannels, we measure
the field transmission matrix t with the setup shown in
Fig. 1(b) [46]. A monochromatic laser beam of wave-
length λ = 532 nm is modulated by a phase-only spatial
light modulator (SLM) before impinging on the sample.
The transmitted field is measured by common-path in-
terferometry with a CCD camera [41, 47, 48]. We modu-
late two orthogonal polarizations of the incident field and
record one linear polarization of the transmitted light.

The field transmission matrix is obtained in spatial-
frequency space. The incident wavefront Vn of a trans-
mission eigenchannel is determined from t†tVn = τnVn,
where τn is the n-th transmission eigenvalue (ordered
from high to low τn). We display the phase-front of
Vn on the SLM, and record the far-field intensity pat-
tern of the transmitted field I(0) with the CCD camera.
We then tilt an eigenchannel wavefront incident onto the
sample by angle θ and track the change in the transmit-
ted wavefront. The transmitted intensity pattern I(θ)
on the camera is numerically tilted back by θ, and its
Pearson correlation with the original pattern I(0) is com-

puted as C(θ) = 〈δI(0)δI(θ)〉/(〈δI(0)
2〉1/2〈δI(θ)2〉1/2),

where δI ≡ I − 〈I〉 and 〈...〉 represents spatial averaging
over the output pattern. We calculate the intensity cor-
relation coefficient C(θ) of the ten highest transmission
channels, of the ten lowest transmission channels, and of
twenty random incident wavefronts. In Fig. 1(c) we show
examples of C(θ) for a high and a low-transmission chan-
nel compared to that of a random wavefront: the high-
transmission channel decorrelates slower with tilt angle
θ than the random wavefront, while the low-transmission
channel decorrelates faster. C(θ) does not decay to 0 at
large θ due to the limited modulation efficiency of our
SLM: as we tilt the incident wavefront with the SLM, a
small portion of the field remains unmodulated, there-
fore the corresponding transmitted fields are correlated.
From the width of C(θ), we determine that the angular
memory-effect range for the highest transmission channel

θ
(h)
0 is 1.52 times of that for a random wavefront θ

(r)
0 , and

the angular range for the lowest transmission channel is

θ
(l)
0 = 0.77 θ

(r)
0 .

To confirm that angular memory effect is enhanced
for high-transmission channels and suppressed for low-
transmission channels, we numerically simulate light
propagation through two-dimensional (2D) diffusive slabs
(W � L� lt). We calculate the complete field transmis-
sion matrix t using the recursive Green’s function method
[46]. Evaluating the transmission eigenchannels of t, we
calculate the output fields of each eigenchannel with re-
spect to the tilt angle θ of its incident wavefront. The
transmitted field is then tilted back by the same angle
θ, and its Pearson correlation with the original transmit-

ted field is computed. From the field correlation C
(E)
n (θ),

the intensity correlation Cn(θ) = |C(E)
n (θ)|2 is obtained.

Cn(θ) decays with the tilt angle θ, and its width θ
(n)
0

gives the angular memory-effect range for the n-th eigen-

channel. Fig. 2(a) clearly shows that θ
(n)
0 increases with

the transmission eigenvalue τn. The eigenchannels with
transmittance τn above the average value τ have larger
memory-effect range, while those of τn < τ have smaller
memory-effect range than the random wavefronts. Fur-

thermore, we find that the width θ
(h)
0 for high trans-

mission channels is inversely proportional to the effec-
tive sample thickness Leff that includes the extrapolation
lengths [46].

The numerically observed dependence of the eigen-
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channel angular memory effect on transmittance agrees
qualitatively with the experimental observation. Such
a dependence might be surprising at first sight as none
of the eigenchannels of the complete transmission ma-
trix spreads laterally in the slab, and they all have the
same transverse widths at the front and the back sides
of the slab [41]. However, we should recognize that once
the incident wavefront of an engenchannel is tilted, it
is no longer the eigenvector of t†t. Consequently, lat-
eral spreading occurs inside the slab, and the transmit-
ted beam becomes wider than the incident beam for all
eigenchannels. The effective widths of input and output
beams are given by the participation numbers of the field
intensity profiles at the front and the back surfaces of the
slab [41]. Their difference ∆D is the transverse spread.
As shown in Fig. 2(b), ∆D increases as the tilt angle θ
increases. However, the increase is much slower for high-
transmission eigenchannels, indicating they are more ro-
bust against the tilt of the incident wavefront than the
low-transmission eigenchannels. This leads to a larger
memory-effect range for high-transmission channels than
low-transmission ones.

The transmission eigenvalue dependence of the tilt-
induced lateral spreading shown in Fig. 2(b) can be un-
derstood as follows. When the incident wavefront of a
transmission eigenchannel is tilted by an angle θ, it ex-
cites not only this eigenchannel, but also other eigen-
channels. The latter can be approximated as a ran-
dom superposition of all other eigenchannels, which is
equivalent to a random incident wavefront. The trans-
mitted field profile at the back side of the sample is
then a superposition of a transversely-localized eigen-
channel profile and a transversely-spread random wave-
front profile. For a high-transmission eigenchannel, its
output profile dominates over the random wavefront pro-
file, but for a low-transmission channel, the output is
dominated by the random wavefront profile. As a result,
the high-transmission channels have stronger correlation
and larger memory effect than the low-transmission chan-
nels.

To make the above understanding more quantitative,
we introduce a phenomenological model that predicts Cn.
As illustrated in Fig. 2(c), the angular memory effect can
be equivalently considered as the correlation of transmit-
ted fields with respect to the tilt angle θ of the scattering
sample for a fixed incident field. The transmission ma-

trix of the tilted sample is tθ = R†θtRθ, where the tilting
matrix is written in the form Rθ = 1 +X. We model the
matrix X as an N ×N complex random matrix with ide-
pendent and Gaussian-distributed entries. The variance
σ2/N of its elements determines the amount of pertur-
bation. When the incident wavefront corresponds to the
transmission eigenchannel Vn of the untilted sample, the
transmitted field through the tilted sample is tθVn, and
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FIG. 2. Numerical and theoretical results. (a) Angular cor-

relation width θ
(n)
0 of transmission eigenchannels versus their

transmittance τn. Each point represents an average over 10
disorder realizations. The horizontal black line denotes the
angular correlation width for random incident wavefronts θ

(r)
0 .

(b) Transverse spread ∆D of high (τ < τn < 1, blue line)
and low (10−4 < τn < τ , red line) transmission eigenchan-
nels vs. tilt angle θ of their incident wavefronts. (c) Sketch

of the transmission matrix of a tilted sample tθ = R†θtRθ,
where Rθ is the tilting matrix and t the field transmission ma-
trix without tilting. (d) Intensity correlation coefficient Cn of

transmission eigenchannels at the tilt angle θ = θ
(r)
0 ≈ 0.8°,

obtained from numerical simulation (red solid line), and the
prediction of the phenomenological model, Eq. (1), with σ2 as
the only fitting parameter (black dashed line). The number
of channels is N = 3239. The diffusive slabs have thickness
k0L = 100, width k0W = 6000, transport mean free path
klt = 4.6, average refractive index n0 = 1.5, where k = n0k0,
k0 = 2π/λ, and λ is the vacuum wavelength.

its correlation with the original transmitted field t Vn is

Cn ≡
| 〈Vn|t†tθ|Vn〉 |2

〈Vn|t†t|Vn〉 〈Vn|t†θtθ|Vn〉

' 1

1 + σ2

τn + σ4τ/N

τn + σ2τ
,

(1)

(see [46] for the derivation). The prediction of the model
fits well to the numerical result (see Fig. 2(d)), with a
value of σ that depends only on θ and the effective sam-
ple thickness Leff . In the limit θ � 1 rad, it can be shown
that σ ∝ k0Leffθ [46]. Eq. (1) shows that the perturbed
output is more correlated with the original output for
high-transmission channels, and when τn � σ2τ , Cn is
on the order of unity. At the same time, the transmitted
pattern decorrelates more for low-transmission channels.
For τn → 0, Cn is on the order of 1/N , which is the ex-
pected value between two uncorrelated speckle patterns
with N speckle grains.
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FIG. 3. Comparison between the experimental and the theoretical results. Correlation coefficient Cn in (a) (C
(R)
n in (b)) of

transmitted (reflected) eigenchannel intensity patterns for θ = 0 and θ = θ
(r)
0 as a function of their normalized transmittance

T/T . θ
(r)
0 is the width at half maximum of the angular correlation function in transmission C(θ) for (a) and in reflection C(R)(θ)

for (b) for random incident wavefronts. Blue solid line and black dots: numerical simulation results in case of complete channel
control (CCC) and incomplete channel control (ICC), respectively. Green open squares (red open circles): experimental data
for ten highest (lowest) transmission channels. The simulation data represents an average over 50 disorder realizations. The
simulation parameters are slab thickness L = 10 µm, width W = 508 µm, lt = 1 µm, n0 = 1.4, background refractive index
n1 = 1.0 (in front of the slab), and n2 = 1.5 (at the back).

For a fair comparison of the simulation and the ex-
perimental data, we must take into account that only a
limited number of channels is controlled in the experi-
ment [46]. The limited numerical aperture (NA) in the
illumination and the detection, the finite area of illumi-
nation on the sample, the phase-only modulation of the
(far-field) incident wavefronts, and single-polarization de-
tection of the transmitted light all reduce the range
of transmittance of experimentally realized eigenchan-
nels [34, 48, 49]. Such incomplete control also limits the
enhancement or suppression of the angular memory-effect
range that can be observed experimentally. Fig. 3(a)
shows the numerically calculated and the experimentally
measured intensity correlation coefficient Cn of transmis-
sion eigenchannels versus their normalized transmittance
T/T . The incomplete control reduces the ranges of both
Cn and T/T . Despite the reduced range, the modifi-
cation of the angular memory effect is clearly observed
experimentally and agrees with the simulation result.

A compelling question is raised by the enhanced
memory-effect range for high-transmission channels: will
the angular memory-effect range also be modified in re-
flection once light is coupled into a high-transmission
channel? To answer this question, we experimentally
measure the reflection correlations for individual trans-
mission eigenchannels. The intensity pattern of reflected
light is recorded in the far field by a second CCD cam-
era (CCD2) in Fig. 1(b). The modification of the an-
gular correlations in reflection is opposite to the mod-
ification in transmission: the high-transmission chan-
nels’ correlation is smaller in reflection than the low-
transmission channels’ correlation for a fixed tilt angle

θ
(r)
0 (see Fig. 3(b)). The angular correlation width θ0 in

reflection for the highest (lowest) transmission eigenchan-
nel is 7% smaller (6% larger) than that for the random

incident wavefronts. Our numerical simulation confirms
the experimental observation: the intensity correlation

coefficient in reflection C
(R)
n decreases as the transmit-

tance increases (Fig. 3(b)). Taking into account the in-
complete control in our experiment, the numerical results
are in good agreement with the experimental data.

The modification of the angular memory effect in re-
flection can also be explained in the framework of our
phenomenological model by replacing τn by 1 − τn [46].
Once the incident light is coupled into a high (low) trans-
mission channel, the reflectance is low (high) and the re-
flected field pattern is sensitive (robust) to the sample
tilt. The reduced memory-effect range in reflection may
provide experimental guidance for shaping the incident
wavefront to couple light into high-transmission channels
when there is no access to the transmitted light [43–45].

In summary, we demonstrate that the angular memory
effect for individual transmission eigenchannels is distinct
from that of random wavefronts. With increasing trans-
mittance, the eigenchannel memory-effect range increases
in transmission, but decreases in reflection. Such varia-
tions can be explained by our phenomenological model
in terms of the robustness of the eigenchannels against
perturbations such as a sample tilt or an incident wave-
front tilt. Our model can be extended to other pertur-
bations, such as frequency detuning of the incident light,
and provides an understanding of the enhanced band-
width (spectral memory effect) for high-transmission
channels, which was observed previously [21]. There-
fore our work reveals the general characteristic of high-
transmission channels: their transmitted fields are robust
while their reflected fields are sensitive against pertur-
bations. Thanks to their larger angular memory-effect
range, the high-transmission channels provide a wider
scan range than Gaussian beams or random wavefronts,
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which will be useful for improving the quality of memory-
effect-based speckle imaging through diffusive or other-
wise complex media. Finally, the spatial memory effect
was recently discovered in anisotropic scattering systems
of length much larger than the scattering mean free path
but comparable to or smaller than the transport mean
free path [23, 24, 30]. It will be interesting to investigate
the spatial memory effect for the transmission eigenchan-
nels of such systems.
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