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The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator is particularly ap-
pealing for fault-tolerant quantum computing with bosons because Gaussian operations on encoded
Pauli eigenstates enable Clifford quantum computing with error correction. We show that applying
GKP error correction to Gaussian input states, such as vacuum, produces distillable magic states,
achieving universality without additional non-Gaussian elements. Fault tolerance is possible with
sufficient squeezing and low enough external noise. Thus, Gaussian operations are sufficient for
fault-tolerant, universal quantum computing given a supply of GKP-encoded Pauli eigenstates.

Introduction—The promise of a quantum computer
lies in its ability to dramatically outpace classical com-
puters for certain tasks [1]. Computation using opera-
tions restricted to Pauli-eigenstate preparation, Clifford
transformations, and Pauli measurements—henceforth
referred to as Clifford quantum computing (QC)—cannot
outperform classical computation since it is efficiently
simulable on a classical computer [2]. Universal quan-
tum computation requires supplementing Clifford QC by
a non-Clifford resource—that is, a preparation, gate, or
measurement that is not an element of Clifford QC.

In the presence of noise, universality is not enough.
The celebrated Threshold Theorem [3] proves that given
low enough physical noise, quantum error correction can
be used to reduce logical noise to arbitrarily low levels—a
property called fault tolerance [4]. Fortunately, Clifford
QC provides all the necessary tools for quantum error
correction. The question then is how to augment Clif-
ford QC such that the result is both universal and fault
tolerant. One way is to use a non-Pauli eigenstate, re-
ferred to as a magic state [5].

The continuous-variable (CV) analog of Clifford QC
is Gaussian QC, which includes Gaussian state prepara-
tion, Gaussian operations (i.e., Hamiltonians quadratic
in â, â†), and homodyne detection. CV systems arise nat-
urally in many quantum architectures, including optical
modes [6–9], microwave-cavity modes [10–13], and vibra-
tional modes of trapped ions [14]. Gaussian QC lends
itself to optics because the nonlinearities required are lim-
ited and of low order and because homodyne detection is
very high efficiency. However, Gaussian QC is efficiently
simulable by a classical computer [15] and requires any
single non-Gaussian resource (preparation, gate, or mea-
surement) for universal QC [16–18]. Further, Gaussian
QC alone is insufficient to correct Gaussian noise [19].

Fault tolerance requires discrete quantum information.
Bosonic quantum error-correcting codes (bosonic codes
for short) embed discrete quantum information into CV
systems in a way that maps CV noise into effective logical

noise acting on the encoded qubits [20–23]. Such codes
are promising for fault-tolerant computation [24, 25] due
to the built-in redundancy afforded by their infinite-
dimensional Hilbert space. High precision controllability
of optical-cavity [10, 12, 13] and vibrational [14] modes
further enhances their appeal. With a bosonic code, one
may define logical-Clifford QC, comprising encoded Pauli
eigenstates and logical-Clifford operations—allowing er-
ror correction at the encoded-qubit level. This, too, is
efficiently simulable and thus requires additional logical-
non-Clifford resources for fault-tolerant universality.

The Gottesman-Kitaev-Preskill (GKP) encoding of a
qubit into an oscillator [21] is currently experiencing
significant theoretical [26–29] and experimental [14, 30]
interest due to its favorable error-correction proper-
ties [31], integration into scalable CV cluster states for
measurement-based QC [32–34], and all-Gaussian Clif-
ford gates and measurements. That is, the GKP encod-
ing is the only known bosonic code for which logical-
Clifford QC and error correction require only Gaussian
QC along with a supply of logical-Pauli eigenstates,
which are non-Gaussian [58]. Until now, fault-tolerant
universal QC with the GKP code has required an ad-
ditional non-Gaussian element—cubic phase gate, cubic
phase state, or logical magic state [21, 35, 36]. In this
Letter we show that no such additional non-Gaussian el-
ement is required.

Specifically, we show that high-quality magic states for
both square- and hexagonal-lattice GKP codes [22] can
be produced by applying GKP error correction to vac-
uum or low-temperature thermal states. The result is
that Gaussian QC and just one type of non-Gaussian
resource—a high-quality GKP Pauli eigenstate—suffice
for both universality and fault tolerance.

Notation and conventions—Here we define nota-
tion and conventions to be used throughout this Let-
ter. We define position q̂ := 1√

2
(â+ â†) and momen-

tum p̂ := −i√
2
(â− â†) for any mode â. This means
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FIG. 1: Wigner-function representations of the square-lattice
GKP (a) Pauli eigenstates and (b) logical Pauli operators in
a single unit cell of phase space with dimensions (2

√
π) ×

(2
√
π). The states are normalized to 1 over one unit cell,

which determines the coefficients c.

[q̂, p̂] = i, with a vacuum variance of 1
2 in each quadrature

and ~ = 1.

The Weyl-Heisenberg displacement operators
X̂(s) := e−isp̂ and Ẑ(s) := eisq̂ displace a state by +s
in position and momentum, respectively. For brevity,
we also define a joint displacement V̂ (s) := Ẑ(sp)X̂(sq),
where s = (sq, sp)

T.

The functions ψ(s) := q〈s|ψ〉 and ψ̃(s) := p〈s|ψ〉 denote
position- and momentum-space wave functions for a
state |ψ〉, respectively (tilde indicates momentum space).
Any function, including wave functions, can be evalu-
ated with respect to position, ϕ(q̂) :=

∫
dsϕ(s)|s〉qq〈s|, to

produce an operator diagonal in the position basis—and
similarly for momentum. Finally, we define XT (x) :=∑
n∈Z δ(x− nT ) as a Dirac comb with spacing T .

The GKP encoding—In the original square-lattice
GKP encoding [21], the wave functions for the logical ba-
sis states {|0L〉 , |1L〉} are Dirac combs in position space
with state-dependent offset: ψj,L(s) = X2

√
π(s − j

√
π)

for j ∈ {0, 1}. Their momentum-space wave functions
are also Dirac combs but with no offset, different spac-
ing, and a relative phase between the spikes: ψ̃j,L(s) =
1√
2
(−1)js/

√
πX√

π(s). Note that the momentum-space

spikes for |1L〉 alternate sign, and those for |0L〉 are uni-
form.

GKP logical operators X̂L and ẐL are implemented by
displacements X̂(

√
π) and Ẑ(

√
π), respectively, while dis-

placements by integer multiples of 2
√
π in either quadra-

ture leave the GKP logical subspace invariant. For later
use, we define the four GKP-encoded logical Paulis

σ̂µL :=
∑
jk

σµjk |jL〉〈kL| , (1)

where σµjk is the jk’th element of Pauli matrix σµ (with

σ0 = I). Note that σ̂µL have support only on the GKP

logical subspace, while X̂L and ẐL have full support and
act both within and outside of the GKP subspace. We
denote the (rank-two) projector onto the square-lattice

GKP logical subspace [21, 37]

Π̂GKP := σ̂0
L = ψ̃0,L(q̂)ψ̃0,L(p̂) = ψ̃0,L(p̂)ψ̃0,L(q̂). (2)

We assume that the physical GKP Pauli eigenstates used
in the following analysis are high quality enough to en-
able fault-tolerant GKP Clifford QC. This allows us to
approximate them as ideal states with noiseless Cliffords
for the purpose of magic-state preparation [5, 38]. We
justify this in the penultimate section.

Kraus operator for GKP error correction—In
its original formulation [21], GKP error correction is a
quantum operation designed to correct an encoded qubit
that has acquired some noise (leakage of its state out-
side of the logical subspace) by projecting it back into
the GKP logical subspace, possibly at the expense of an
unintended logical operation. Standard implementations
of error correction strive to avoid these unintended logi-
cal operations (residual errors). In what follows, we ap-
ply the machinery of GKP error correction to a known
Gaussian state, which means the outcome-dependent fi-
nal state is known perfectly.

GKP error correction [21, 39] proceeds in two steps:
First, one quadrature is corrected, then the conjugate
quadrature. We define the Kraus operator that corrects
just the q quadrature K̂q

EC(t) via the circuit (read right
to left):

Kq
EC(t)

in

t

= X(−t) •
in

t p〈t| • |0L〉

where the controlled operation is ĈZ = eiq̂⊗q̂, and t ∈ R
is the measurement outcome. This circuit differs from
the original [21] in that the correction here is a negative
displacement by t rather than by t rounded to the nearest
integer multiple of

√
π. The outputs may differ by a log-

ical operation X̂(±
√
π), but this is unimportant because

the input state is known.
Direct evaluation shows K̂q

EC(t) = ψ̃0,L(q̂)X̂(−t). A
similar calculation shows that the Kraus operator for cor-
recting the p quadrature is K̂p

EC(t) = ψ̃0,L(p̂)Ẑ(−t). Ap-
plying both corrections (in either order since they com-
mute up to a phase) performs full GKP error correction:

K̂EC(t) = K̂p
EC(tp)K̂

q
EC(tq) = Π̂GKPV̂ (−t), (3)

with measurement outcomes t = (tq, tp)
T. This Kraus

operator (i) displaces the state by an outcome-dependent
amount, V̂ (−t), and then (ii) projects it back into the
GKP logical subspace with Π̂GKP [40].

Applying K̂EC(t) to an input state ρ̂in produces

the unnormalized state ˆ̄ρ(t) = K̂EC(t)ρ̂inK̂
†
EC(t),

where the bar indicates lack of normalization. The
joint probability density function (pdf) for the out-
comes, pdf(t) = Tr[ˆ̄ρ(t)], normalizes the output state:
ρ̂(t) = ˆ̄ρ(t)/ pdf(t).
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FIG. 2: (a) GKP error correction of the vacuum: outcome-dependent fidelity F with the nearest H-type magic state. The
outcomes that do not yield a distillable magic state are marked with a white “x” (these yield GKP Pauli eigenstates). Bloch
vectors for the representative outcomes (A–D) are shown on the GKP Bloch sphere in (b). (c) Probability of producing an
H-type resource state of at least fidelity F using a thermal state of mean occupation n̄. Resource states with fidelity higher
than the distillation threshold, F > 0.853—i.e. outside the stabilizer octohedron—can be distilled into higher-quality |+HL〉
states [41, 42]. Distillation is possible for n̄ < n̄thresh,H = 0.366. (d) Û maps logical square-lattice GKP states to equivalent
logical states in the hexagonal-lattice GKP encoding [31]. A vacuum state on the hexagonal lattice (1-σ error ellipse shown in

blue) is mapped to a squeezed state on the square lattice under Û†. (e) Probability of producing a resource state distillable to
|+T hex

L 〉 of at least fidelity F by performing GKPhex error correction on a thermal state of mean occupation n̄. Resource states
whose Bloch vectors lie on or within the stabilizer octohedron (F ≤ 0.789) cannot be distilled, which occurs at n̄bound,T = 0.468.
For T states, a distillation threshold has been proven for F > 0.8273 [43], which occurs for n̄thresh,T = 0.391.

Bloch vector for the error-corrected state—
Using the logical basis in Eq. (1) we represent the out-
put state ρ̂(t) = 1

2

∑
µ rµ(t)σ̂µL by a 4-component Bloch

vector r(t) with outcome-dependent coefficients rµ(t) :=
Tr[ρ̂(t)σ̂µL]. For the unnormalized state, r̄0(t) = pdf(t),
and for the normalized state, r0(t) = 1. In what follows,
we use the notation r = (r0, ~r), where ~r is the ordinary
(3-component) Bloch vector within r.

We employ the Wigner functions for the logical basis
states [21], shown in Fig. 1(a), to find the Wigner func-
tions for the GKP-encoded Pauli operators and the GKP
logical identity, Eq. (1). Their explicit form is

WσµL
(x) =

∑
n∈Z2

(−1)n·¯̀µ

2
δ(2)

[
x−

(
n +

`µ
2

)√
π

]
, (4)

where x = (q, p)T, `0 = (0, 0)T, `1 = (1, 0)T, `2 =
(1, 1)T, `3 = (0, 1)T, and ¯̀

µ is just `µ with its entries
swapped. The Wigner functions are shown in Fig. 1(b).

Since Π̂GKPσ̂
µ
LΠ̂GKP = σ̂µL, we skip the projection us-

ing Π̂GKP and directly calculate the unnormalized Bloch-
vector components from the overlap of the unnormalized
error-corrected state ˆ̄ρ(t) with the logical Paulis. We find

the overlaps in the Wigner representation:

r̄µ(t) = Tr[ˆ̄ρ(t)σ̂µL] = Tr[V̂ (−t)ρ̂inV̂
†(−t)σ̂µL]

= 2π

∫∫
d2xWin(x + t)WσµL

(x), (5)

where Win(x) is the Wigner function of the input state
ρ̂in. Note that r̄0(t) = Tr[ˆ̄ρ(t)] = pdf(t), which is nor-
malized over a unit cell of size (2

√
π)× (2

√
π) (since the

full pdf is periodic). The normalized Bloch 4-vector is
r(t) := r̄(t)/r̄0(t).

GKP error correction of Gaussian states—In
what follows, we apply GKP error correction to a general
Gaussian state—i.e., an input state whose Wigner func-
tion is Win(x) = Gx0,Σ(x), where Gx0,Σ is a normalized
Gaussian with mean vector x0 and covariance matrix Σ.

Equation (5) can be evaluated analytically when the
input state is Gaussian:

r̄µ(t) =
1

4π

[
G0,(4πΣ)−1(v)

]−1
Θ

(
v +

¯̀
µ

2
, τ

)
, (6)

where τ = i
2Σ−1, v = τ

[
1
2`µ −

1√
π

(x0 + t)
]
, and the

Riemann (a.k.a. Siegel) theta function is defined as
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Θ(z, τ ) :=
∑

m∈Zn exp
[
2πi

(
1
2mTτm + mTz

)]
for τ ∈

Hn. The set Hn denotes the Siegel upper half space—
i.e., the set of all complex, symmetric, n × n matrices
with positive-definite imaginary part (see Ref. [44], for
example). The overall coefficient 1

4π ensures that pdf(t)
is normalized over a single unit cell.

GKP magic states from error correction—GKP
error correction of a Gaussian state yields a known, ran-
dom state encoded in the GKP logical subspace. Unless
that state is highly mixed or too close to a logical Pauli
eigenstate, it can be used as a (noisy) magic state along
with GKP Clifford QC for fault-tolerant universal QC [5].
Reference [37] suggested coupling a vacuum mode to an
external qubit to perform GKP error correction and then
postselecting an outcome close to t ≈ 0 to produce a log-
ical H-type state [5]. In fact, neither postselection nor
interaction with a material qubit is required.

With access to a supply of |0L〉 states, there is no
need for any resources beyond Gaussian QC, since nearly
any outcome t from applying GKP error correction to
the vacuum state produces a distillable H-type magic
state [5, 41], as shown in Fig. 2(a). This is because
there are 12 H-type magic states (all related by Clif-
fords to |+HL〉), and any of them will do the job [5].
The relevant quantity is the fidelity F to the closest
H-type state [41]. Without loss of generality, assume
this is |+HL〉, whose Bloch 3-vector is ~rH = 1√

2
(1, 0, 1).

(If not, apply GKP Cliffords until it is.) Then, F =
〈+HL| ρ̂(t) |+HL〉 = 1

2 [1 + ~rH · ~r(t)]. States of sufficient
fidelity can be twirled onto the HL-axis, depolarized to
make them identical, and then distilled [5, 42].

Input-state purity is not required either. Applying
GKP error correction to a thermal state also produces
a distillable mixed state with nonzero probability as long
as its mean occupation number n̄ < 0.366 =: n̄thresh,H ;
see Fig. 2(c). (A thermal state is Gaussian with x0 = 0
and Σ = (n̄ + 1

2 )I , which we plug into Eq. (6) to pro-
duce this plot.) Most high-purity, Gaussian states can
be GKP-error corrected into a distillable magic state be-
cause most states do not preferentially error correct to a
Pauli eigenstate. For the vacuum, pdf(t) is always be-
tween 0.066 and 0.094—i.e., all outcomes, and thus a
wide variety of states, are roughly equally likely.

Hexagonal-lattice GKP code—Our results can be
extended to the hexagonal-lattice GKP code [31] by sim-
ply modifying the Gaussian state to be error corrected
as follows. Define Û as the Gaussian unitary such that
Û |ψsquare

L 〉 = |ψhex
L 〉, where the logical state is the same

although the encoding differs. Let ρ̂ be a Gaussian state
to be GKP error corrected using the hexagonal lattice,
with x0 = 0 and covariance Σ. Then, the equivalent
state to be GKP error corrected on the square lattice is
ρ̂′in = Û†ρ̂inÛ , which is Gaussian with x0 = 0 and covari-

ance Σ′ = S−1ΣS−T [45], where S = (2
√

3)−
1
2

(
2 −1

0
√

3

)
.

This mapping is shown for ρ̂in = |vac〉〈vac| in Fig. 2(d).

Using this mapping, we can get results for hexagonal-
lattice GKP error correction by reusing Eq. (6) with the
modified state. Vacuum and thermal states are biased
towards the xz-plane of the Bloch sphere in the square-
lattice encoding but unbiased with respect to all three
Pauli axes in the hexagonal-lattice encoding. Thus, in
Fig. 2(e), we plot the fidelity of hexagonal-lattice GKP
error correction of a thermal state with T -type magic
states [5] such as |+T hex

L 〉, which has Bloch 3-vector ~rT =
1√
3
(1, 1, 1).

Error correction as heterodyne detection—
We note that an alternate description of what we are
proposing is to perform heterodyne detection (measure-
ment in the coherent-state basis) on half of a GKP-
encoded Bell pair. This is similar to what GKP pro-
posed [21], but with photon counting replaced by het-
erodyne detection, which is Gaussian. To see this, note
that a Bell state can be written (ignoring normalisation)
as
∑
µν ηµν σ̂

µ
L ⊗ σ̂νL, where η = diag(1,−1,−1,−1). A

coherent-state measurement on the first mode with out-
come α produces

∑
µν ηµν Tr(|α〉〈α| σ̂µL)σ̂νL on the second

mode, which agrees with Eq. (5) using ρ̂in as vacuum
and t = −

√
2(Reα, Imα)T but with opposite sign of the

resulting ~r. Intuitively, this is just Knill-type error cor-
rection [46], which involves teleporting the state to be
corrected through an encoded Bell pair and reinterpret-
ing vacuum teleportation as heterodyne detection.

Noise and imperfections—We employ ideal GKP
Clifford QC in our analysis because the fidelity require-
ments for fault-tolerant Clifford QC (our actual assump-
tion) are orders of magnitude stricter than those for
magic-state distillation [5], so small additional noise will
not qualitatively change our main result [38]. Using
finite-precision GKP states for error correction causes
uncertainty in the measurement outcome t [39], which
can be modeled as additive Gaussian noise on the in-
put state—i.e., by replacing n̄ 7→ n̄ + ∆n̄, where ∆n̄
equals the q̂- or p̂-variance of an individual GKP spike.
∆n̄ is between 0.05 and 0.016 for 10- to 15-dB GKP
states (∆n̄ = 1

210−(#dB)/10) [24], and fault tolerance
is unlikely to be possible with lower-quality states than
these [24, 47, 48]. Since n̄thresh > 0.36, this additional
noise is qualitatively unimportant to our main result.
Furthermore, the resulting magic states will be the same
quality as the GKP ancillas [39], which are sufficient for
fault tolerance by assumption. Having established our re-
sult’s robustness to imperfections, we leave detailed elab-
oration to further work.

Discussion—We have deployed GKP error correction
in a nonstandard way to extract the magic from easy-to-
prepare Gaussian states that extend into the “wilderness
space” outside a bosonic code’s logical subspace. The
wilderness space may be rich in other resources, too—
e.g., providing the means to produce other logical states
or perform logical operations more easily than would be
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possible by restricting to the logical subspace. This fea-
ture is likely to extend beyond GKP to other bosonic
codes such as rotation-symmetric codes [23] (including
cat [49, 50] and binomial [51] codes), bosonic subsystem
codes [52], and multi-mode codes [22, 31, 53].

Our result is an example of the fact that two efficiently
simulable subtheories (GKP Clifford QC and Gaussian
QC here) together can contain all the ingredients for
universality. For qubits this is straightforward [54, 55]:
combine Clifford QC from different Pauli frames since
stabilizer states of one are magic states for the other. In
CV systems, dual-rail photonic qubits [56] also exhibit
this feature: Clifford QC (requiring several non-Gaussian
elements) and Gaussian single-qubit gates together give
universality.

The GKP encoding stands out among bosonic codes
as the only known code for which Clifford QC is imple-
mented entirely with Gaussian operations given a sup-
ply of encoded Pauli eigenstates. We show that once
high-quality GKP Clifford QC is achieved—a challenging
task already in progress [14, 29, 30]—then fault-tolerant
universality is just a trivial Gaussian state away. This
means there is no longer any need to pursue creating cu-
bic phase states for the GKP encoding. Focus on making
high-quality GKP Pauli eigenstates, and the rest is all
Gaussian.
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