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Contextuality is an indicator of non-classicality, and a resource for various quantum procedures.
In this paper, we use contextuality to evaluate the variational quantum eigensolver (VQE), one of
the most promising tools for near-term quantum simulation. We present an efficiently computable
test to determine whether or not the objective function for a VQE procedure is contextual. We apply
this test to evaluate the contextuality of experimental implementations of VQE, and determine that
several, but not all, fail this test of quantumness.

I. INTRODUCTION

Quantum computing hardware is entering the era of
noisy intermediate scale quantum (NISQ) computers [1].
These are machines that are too large to simulate with
classical computers, but too small to allow fault toler-
ant quantum computation. A crucial question is whether
NISQ machines can perform useful tasks beyond the ca-
pabilities of classical computers [2].

In the last decade much attention has been focused
on algorithms for quantum simulation of chemical sys-
tems [3–21]. One such algorithm, the variational quan-
tum eigensolver (VQE, first proposed in [11]), has
emerged as an important potential application of NISQ
computers. Experimental realizations of VQE have been
performed on a number of platforms [9–23].

VQE is based on mapping a Hamiltonian H to a
weighted sum

∑
i hiPi, where the terms S ≡ {Pi} are

Pauli operators and the hi are (real) coefficients. A short
quantum circuit prepares an ansatz state, and the expec-
tation value of each Hamiltonian term is estimated by
repeated prepare-and-measure experiments. The ansatz
parameters are optimized classically, producing a varia-
tional upper bound to the ground state energy.

VQE is advantageous for NISQ computers because of
the short coherence times required compared to phase
estimation [13]. Theoretical improvements of VQE to
date have proposed methods to reduce the number of
qubits and measurements required [24–37], and to im-
prove the ansatz states [31, 38, 39], computation of gra-
dients [40–42], and classical optimization techniques [43].
In the present paper we consider a separate issue: how
quantum mechanical is this hybrid quantum-classical al-
gorithm, for a given Hamiltonian? We use contextuality
as our measure of quantumness.

The study of contextuality began with the Bell-
Kochen-Specker theorem [44–46]. Contextuality of
preparation, transformation and measurement were de-
fined in 2008, and the relationship of contextuality to
negativity of quasi-probability representations was estab-
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lished [47–51]. Contextuality has been extensively stud-
ied in the last decade [52–76].

The Bell-Kochen-Specker theorem states that there ex-
ist quantum systems for which it is impossible to repro-
duce the outcome probabilities of every possible measure-
ment as marginals of single joint probability distribution
[44–46]. However, if we restrict to some smaller set of
measurements corresponding to a set of observables S,
properties of the set determine whether a joint distribu-
tion may exist for only those measurements. Measure-
ment contextuality refers to various types of contradic-
tions that can appear in attempts to describe sets of mea-
surements by joint probability distributions. We examine
“strong contextuality” [77], which is contextuality in the
same vein as the Peres-Mermin square [78–80] (see Mer-
min’s outline of a “plausible” hidden-variable theory in
[80, §II].) Colloquially, a set of measurements is strongly
contextual if it is impossible to consistently assign out-
comes to every measurement in the set. In “weak” ver-
sions of contextuality such as Bell inequality violations,
joint outcomes may be consistently assignable, but sta-
tistical predictions based on the existence of joint prob-
ability distributions are violated.

Since VQE is an important near-term application of
NISQ machines, it is natural to consider how the contex-
tuality of VQE procedures is related to any quantum ad-
vantage that they may obtain. In this paper, we present a
method to analyze the contextuality of VQE procedures.
As applied to VQE, strong contextuality is a property of
the target Hamiltonian. It is independent of the ansatz
states, and provides a stringent test of the quantumness
of the problem being addressed. The set of Hamilto-
nians that are noncontextual by our definition includes
diagonal Hamiltonians that encode a classical objective
function. Such problems are addressed by the Quantum
Approximate Optimization Algorithm (QAOA), which is
closely related to VQE [81]. As we shall see, the set
of noncontextual Hamiltonians contains the set of com-
muting Pauli Hamiltonians, and therefore represents a
broader definition of classicality.

One concept upon which we rely is the closed subthe-
ory : a set of measurements in which all measurements
whose outcomes are determined with certainty by the
outcomes of others in the set are themselves members of
the set. We introduce this concept here because it pro-
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vides a distinction between this work and the criteria for
strong contextuality studied in [53], which are based on
sets of observables that are not necessarily closed subthe-
ories. In [65] it is shown that the efficiency of classical
simulation is limited by contextuality for sets of mea-
surements that are closed subtheories. We impose the
requirement that sets of operators form closed subtheo-
ries, so that the results of [65] apply to our setting.

In [56] the authors obtain criteria for contextuality
based on compatibility graphs, as do we. However, [56]
focuses on weak contextuality, that is, violation of non-
contextual inequalities, whereas our interest is in strong
contextuality. We further discuss the distinction between
our condition for contextuality and previously studied
criteria in Section IV, and in [82].

A natural next step is to develop measures that quan-
tify contextuality based on our criterion. We suggest
two simple measures at the end of Section II, and discuss
more general measures in [82], as well as their relations
with prior measures, which include the contextual frac-
tion [52, 61, 69, 70], relative entropy of contextuality,
mutual information of contextuality, contextual cost (all
in [59]), and rank of contextuality [64].

In Section II, we develop the notion of contextuality we
will study and give our main results. In Section III we
evaluate the contextuality of several VQE experiments.
We conclude in Section IV with a discussion of our re-
sults, and directions for future work.

II. STRONG CONTEXTUALITY

We focus on the analysis of strong contextuality for
sets of Pauli operators. We use the following notation:
X ≡ σx, Y ≡ σy, Z ≡ σz, and I ≡ 2× 2 identity (1 will
denote a generic identity matrix). We omit the tensor
product symbol: IX denotes I ⊗ σx. Let S be the set of
measurements that are performed in a quantum proce-
dure: in our case these will be Pauli measurements. As
we will discuss below, the (non)contextuality of a quan-
tum procedure is determined by properties of S.

A joint outcome assignment is an assignment of one
outcome (±1) to each measurement in S. In an ontolog-
ical hidden-variable theory, joint outcome assignments
correspond to ontic states (“real states”) of a system,
since they may be interpreted as definite ontological val-
ues for the observables S. A measurement is then seen as
revealing information about the ontic state, which exists
independently whether it is measured or not.

A context on a finite dimensional Hilbert space is a
set of pairwise-commuting observables whose eigenvalues
uniquely specify the (shared) basis states. If S is a con-
text, we will see that it is always possible to consistently
assign outcomes to the measurements in S. However, if S
is not a context and has nonempty intersection with mul-
tiple incompatible contexts (context compatibility is de-
fined in [82]), it may be impossible to consistently assign
joint outcomes. In this case the outcomes thus assigned

to any individual measurement are context-dependent:
hence the term “contextual.”

Given any set of measurements S, let S be the set of
measurements whose outcomes are predicted with cer-
tainty given an assignment of outcomes to S. In the
language of [65], S corresponds to the smallest closed
subtheory containing S. The outcomes for S induced by
an assignment of outcomes to S may contain contradic-
tions even if the outcomes for S alone do not.

A prediction with certainty occurs when for some ob-
servable A′ there exists a commuting subset S ′ ⊆ S such
that A′ is equal to the product of the operators S ′. Then
since the operators S ′ may all be measured simultane-
ously, in any joint outcome assignment to S ∪ {A′} the
outcome assigned to A′ must be the product of the out-
comes assigned to S ′: we therefore say that A′ is di-
rectly determined by S [78]. A′ may now contribute to
determining some other operators that are not directly
determined by S. Thus in general a measurement A is
determined by S if there is a “determining tree” that
leads from S to A:

Definition 1. A determining tree for a Pauli measure-
ment A over a set of Pauli measurements S is a tree whose
nodes are Pauli operators and whose leaves are operators
in S, such that...

1. The root is A.

2. All children of any particular parent pairwise com-
mute (as operators).

3. Every parent node is the operator product of its
children (and thus commutes with them).

Fig. 1 shows determining trees for the measurements
±Y Y over S = {XI, IX,ZI, IZ}. It is easy to check that
these trees satisfy the properties of Definition 1. This
example is a recasting of the classic Peres-Mermin square
[78–80].

FIG. 1. Determining trees for ±Y Y over {XI, IX,ZI, IZ}
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Given Definition 1, we say that A is determined by S
if and only if there exists a determining tree for A over S.
This also provides a formal definition for S: it is the set
of Pauli measurements for which there exist determining
trees over S.

Given a determining tree τ for a Pauli A over a set of
Pauli operators S, and a joint outcome assignment to S,
we may now find the determined outcome for A. Let L be
the leaves of τ ; Lmay contain multiple copies of the same
operator. By induction on property 3 of a determining
tree (see Definition 1), A is the operator product of the
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elements of L. Therefore, given an assignment of values
ρL = ±1 to each L ∈ L, the value assigned to A must be

ρA =
∏
L∈L

(ρL)
mL =

∏
L∈D

ρL, (1)

where the exponent mL is the multiplicity of the operator
L in L. D is a subset of the leaves that we call the
determining set of τ , defined as follows:

Definition 2. For a determining tree τ , the determin-
ing set is defined to be the set containing one copy of
each operator with odd multiplicity as a leaf in τ . If for
some determining tree with root A, the determining set
is empty, then every mL in the first product in (1) must
be even, so the outcome assigned to A is 1.

We may now state our condition for contextuality:

Definition 3. A set S of Pauli operators is contextual
if for some Pauli A there exists a determining tree τ for
A over S and a determining tree τ ′ for −A over S such
that the determining sets for τ and τ ′ are identical.

By (1), the existence of such trees implies that for any
joint outcome assignment, the outcome for A is both +1
and −1, which is a contradiction.

How does this apply to the Peres-Mermin square?
Fig. 1 gives determining trees for ±Y Y over S =
{XI, IX,ZI, IZ}. In each tree, the set of leaves is S
and each leaf has multiplicity 1, so the determining set
for each tree is S. Thus S satisfies the criteria in Defini-
tion 3, and is contextual.

The criterion for strong contextuality in Definition 3
depends on a measurement operator (A ∈ S) that may
or may not be an element of S. However, for any S
that is contextual according to Definition 3, we may ob-
tain a contradiction in the assignment(s) to an operator
contained in S. This is demonstrated by the following
corollary:

Corollary 3.1. A set S of Pauli operators is contextual
if and only if for some B ∈ S there exists a determining
tree for −B over S, whose determining set is {B}.

The plain language statement of the contradiction in
this case is: “the outcome (±1) assigned to −B must be
the outcome assigned to B.” A third equivalent definition
is also useful:

Corollary 3.2. A set S of Pauli operators is contextual
if and only if there exists a determining tree for −1 over
S, whose determining set is empty.

The proofs may be found in [82]. The plain language
statement of the contradiction in this case is: “the out-
come assigned to −1 (whose eigenvalues are all −1) must
be +1.” Definition 3, Corollary 3.1, and Corollary 3.2 for-
malize the notion of contradiction in induced joint out-
comes for S. Since S is the smallest closed subtheory
containing S, such a contradiction constitutes strong con-
textuality of S.

We now present three theorems that give necessary
and sufficient conditions for measurement contextuality
in the sense of Definition 3. We will make use of the
following concept:

Definition 4. For a set S of Pauli operators, the com-
patibility graph of S is an undirected graph whose nodes
are the operators in S, and in which a pair of operators
is adjacent if and only if they commute.

Theorem 1. A set of four Pauli operators {A,B,C,D}
is contextual if and only if its compatibility graph has one
of the forms given in Fig. 2 (up to permutations of the
operators).

FIG. 2. Compatibility graphs for contextual sets of four Pauli
operators.
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Theorem 2. A set of n Pauli operators is contextual if
and only if it contains a subset consisting of four opera-
tors whose compatibility graph has one of the forms given
in Fig. 2 (up to permutations of the operators).

The proofs of Theorems 1 and 2 are given in [82]. The-
orem 2 provides an efficient algorithm for determining
whether an arbitrary set S of Pauli measurements is con-
textual. First remove any operators from S that com-
mute with all others (searching for these takes O(|S|2)
steps): let T be the remaining set. Then over T , search
for a set of three operators A,B,C such that A commutes
with B and C, but B and C anticommute. If such a set
exists, then since there is some D ∈ T that anticommutes
with A, the compatibility graph of A,B,C,D has one of
the forms Fig. 2 (up to exchange of B and C): thus S is
contextual. If no such set exists, then S is noncontextual.
There are O(|S|3) subsets of size three in S, so this is the
runtime for the search. In many VQE procedures some
structure on the set S is known, which may improve the
efficiency of determining whether it is contextual.

Although we ultimately only need to search for triples
of operators in the algorithm, the contextual compati-
bility graphs in Fig. 2 have four nodes instead of three
because we must first remove universally-commuting op-
erators. Note that after this is done (to obtain T ), we
search for a subset {A,B,C} in which commutation is
not transitive. Each such subset represents an obstacle
to commutation being an equivalence relation on T . This
is formalized in the following theorem:

Theorem 3. For a set S of Pauli operators, let T be
the set obtained by removing any operator that commutes
with all others in S. Then S is noncontextual if and only
if commutation is an equivalence relation on T .
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The proof of Theorem 3 is given in [82]. That commuta-
tion is not transitive in general is a non-classical property.
Operators that commute with all others in the set cannot
contribute to contextuality (see Lemma 2.1, in [82]), so
it is satisfying that after removing these non-transitivity
of commutation is equivalent to contextuality.

Can we extend our evaluation procedure to a measure
of the amount of contextuality present in a contextual
set S? One natural measure of the contextuality of H
is obtained by evaluating the distance from H to any
noncontextual Hermitian operator, as suggested in [69].
Any choice of metric on observables will induce such a
measure. Let a decontextualizing set S ′ be any subset
of S such that S \ S ′ is noncontextual. Then we may
define another measure of contextuality as the minimum
of

∑
j |h′j | over all subsets {h′j} of the coefficients that

are associated to decontextualizing sets. This measure
provides an upper bound on the error in the energy es-
timate induced by “decontextualizing” the Hamiltonian.
We discuss generalizations of these measures, and their
relations with previously studied measures in [82].

III. EVALUATION OF CONTEXTUALITY IN
VQE EXPERIMENTS TO DATE

We now use the methods in Section II to assess con-
textuality in VQE experiments performed to date. The
results are summarized in Table I, in which we also give
CD0, a measure of contextuality given by the minimum
size of any decontextualizing set as a fraction of the to-
tal number of terms. For the larger Hamiltonians, we
use a heuristic approximation for CD0: see [82] for de-
tails about this method and about the experiments. Note
that each simulation of H2 in the STO-3G minimal basis
is noncontextual. This is not surprising if one considers
these simulations as encoding a two-dimensional Hilbert
space spanned by a bonding and antibonding state, i.e., a
single qubit, for which Bell gave a noncontextual hidden-
variable theory [83].

Citation: System: Contextual? CD0 |S|
Dumitrescu et al. [22] Deuteron No 0 —
Kandala et al. [17] H2 No 0 4
O’Malley et al. [13] H2 No 0 5
Hempel et al. [18] H2 (BK) No 0 5
Hempel et al. [18] H2 (JW) No 0 14
Colless et al. [19] H2 No 0 5
Kokail et al. [23] Schwinger Model Yes ∼0.16 231
Nam et al. [20] H2O Yes 0.27 22
Hempel et al. [18] LiH Yes 0.33 12
Peruzzo et al. [11] HeH+ Yes 0.38 8
Kandala et al. [17] BeH Yes ∼0.74 164
Kandala et al. [17, 21] LiH Yes ∼0.77 99

TABLE I. Evaluation of contextuality in VQE experiments.
CD0 is the minimum number of terms we must remove from
the Hamiltonian to reach a noncontextual set, as a fraction of
the total number of terms (|S|). In [22], |S| varies.

IV. DISCUSSION

All VQE procedures that have been implemented to
date, whether noncontextual or contextual, have been
small enough to simulate classically. The purpose of such
experiments is not to demonstrate quantum advantage,
but to apply current hardware to small examples of real-
world applications. Such efforts have been instrumental
in developing both experimental and theoretical capa-
bilities; indeed, VQE itself was developed in this con-
text [11].

For these reasons, we should be clear that our classifi-
cation of these experiments as contextual or noncontex-
tual is not a judgement of the value of the experiments,
but rather a constructive categorization whose purpose is
to inform future experiments and theoretical work. Con-
textuality of a Hamiltonian according to our definition
is connected to inefficiency of classical simulation [65].
Furthermore, as noted above, we may regard a noncon-
textual Hamiltonian as an instance of an essentially clas-
sical problem, akin to quantum algorithms for explicitly
classical problems as in QAOA [81] (note that QAOA’s
diagonal Hamiltonians are always noncontextual.)

In spite of this last point, however, a noncontextual
VQE procedure may still be hard to simulate classically,
since classical problems can be classically hard. How-
ever, contextuality in a VQE procedure provides a strict
separation between it and any classical algorithm, by rul-
ing out the existence of a description of the problem in
terms of joint probability distributions over a classical
phase space, and thus precluding any classical approach
either explicitly or implicitly based on such distributions.
We suggest therefore that future VQE implementations,
even at small scales, should focus on contextual Hamil-
tonians, according to the criteria we have developed.

Our criterion for contextuality of a set of Pauli oper-
ators S is that joint outcome assignments to S are nec-
essarily self-contradictory. In other words, we analyze
contextuality for the minimal closed subtheory contain-
ing S; this allows us to invoke the results of [65], which
show that efficient simulation by sampling from the dis-
crete Wigner function is only possible in the absence of
contextuality. This is not the only choice: for example,
[52, 53, 66] do not require the measurements to form a
closed subtheory. The relationship of our criterion to
that of [52, 53, 66] is discussed further in [82].

The set of noncontextual Hamiltonians contains the set
of commuting Pauli Hamiltonians, but is distinct from
the set of frustration-free Hamiltonians, as may be seen
by taking A, B, C, and D in Fig. 2 to be four consecu-
tive projectors in the AKLT model (e.g., [84]). We leave
further consideration of the set of noncontextual Hamil-
tonians to future work.

Subsequent to the appearance of our work, the result
given in our Theorem 2 was independently discovered in
[76, §IV], which presents a Wigner function treatment
of qubit systems using a phase space constructed from
noncontextual closed subtheories.
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[38] D. W. Berry, M. Kieferová, A. Scherer, Y. R. Sanders,
G. H. Low, N. Wiebe, C. Gidney, and R. Babbush, npj
Quantum Information 4, 22 (2018).

[39] N. M. Tubman, C. Mejuto-Zaera, J. M. Epstein, D. Hait,
D. S. Levine, W. Huggins, Z. Jiang, J. R. McClean,
R. Babbush, M. Head-Gordon, and K. B. Whaley, arXiv
preprint (2018), arXiv:1809.05523 [quant-ph].

[40] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and
N. Killoran, arXiv preprint (2018), arXiv:1811.11184
[quant-ph].

[41] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, and
N. Killoran, arXiv preprint (2018), arXiv:1811.04968
[quant-ph].

[42] A. Harrow and J. Napp, arXiv preprint (2019),
arXiv:1901.05374 [quant-ph].

[43] Z.-C. Yang, A. Rahmani, A. Shabani, H. Neven, and
C. Chamon, Phys. Rev. X 7, 021027 (2017).

[44] J. S. Bell, Physics 1, 195 (1964).
[45] J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).
[46] S. Kochen and E. Specker, J. Math. Mech. 17, 59 (1967).
[47] R. W. Spekkens, Phys. Rev. Lett. 101, 020401 (2008).
[48] C. Ferrie and J. Emerson, Journal of Physics A: Mathe-

matical and Theoretical 41, 352001 (2008).
[49] C. Ferrie and J. Emerson, New Journal of Physics 11,

063040 (2009).
[50] C. Ferrie, Reports on Progress in Physics 74, 116001

(2011).
[51] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, New

Journal of Physics 14, 113011 (2012).
[52] S. Abramsky and A. Brandenburger, New Journal of

Physics 13, 113036 (2011).
[53] R. Ramanathan, A. Soeda, P. Kurzyński, and D. Kasz-
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