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Strongly correlated Kagome magnets are promising candidates for achieving 
controllable topological devices owing to the rich interplay between inherent 
Dirac fermions and correlation-driven magnetism. Here we report tunable local 
magnetism and its intriguing control of topological electronic response near 
room temperature in the Kagome magnet Fe3Sn2 using small angle neutron 
scattering, muon spin rotation, and magnetoresistivity measurement techniques. 
The average bulk spin direction and magnetic domain texture can be tuned 
effectively by small magnetic fields. Magnetoresistivity, in response, exhibits a 
measurable degree of anisotropic weak localization behavior, which allows the 
direct control of Dirac fermions with strong electron correlations. Our work 
points to a novel platform for manipulating emergent phenomena in strongly-
correlated topological materials relevant to future applications. 

 
The tunability of topologically protected states through interactions between 

magnetism and electronic band structure provides a novel route towards designing 
complex quantum materials for technological applications. Theoretically, Kagome 
structures that break time-reversal symmetry have been proposed to host nontrivial 
topological electronic states with controllability provided by local magnetism [1-5]. 
Experimental investigations of these proposals have been recently made possible, with 
the discovery of inherent Dirac/Weyl fermions and magnetism-related Berry curvature in 
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strongly-correlated Kagome magnets, such as Fe3Sn2, Mn3Sn, and Co3Sn2S2 [6-10]. In 
addition to being analogues of the graphene lattice, which features massless Dirac bands 
[11], magnetic interactions in the Kagome magnets lead to exotic magnetic ground states 
and consequently impact the materials’ electronic properties [6,7].  

Rhombohedral Fe3Sn2 (space group R3m) consists of a Fe3Sn bilayer separated by a 
single Sn layer [Fig. 1(a)] with lattice constants a = 5.34 Å and c = 19.79 Å in the 
hexagonal lattice notation. Fe atoms form a breathing Kagome structure that comprises 
hexagons and equilateral triangles with alternating Fe bond lengths [Fig. 1(b)]. The Fe3Sn 
bilayer is mainly responsible for both the nontrivial topological states and strongly-
correlated magnetism, and thus leads to a direct connection between the two. 
Electronically, angle-resolved photoemission (ARPES) [6] and scanning tunneling 
microscopy quasiparticle interference (QPI) measurements [7] revealed massive Dirac 
bands at low temperatures and transport measurements identified large intrinsic 
anomalous Hall signals (AHE) from 2 K to 400 K [6,12-15]. Magnetically, Fe3Sn2 is a 
soft ferromagnet with electron spins residing on Fe atoms [16,17]. The Fe moments are 
non-collinear and transition from a high-temperature ferromagnetic (HT) phase with a 
Curie temperature of 640 K, in which the spins are closer to the c axis, to a low-
temperature (LT) phase (below ~ 100 K), in which the spins are close to the Kagome 
plane [16-18]. Lorentz transmission electron microscopy observes the presence of 
mesoscopic stripe-like domains of alternating magnetization within the Kagome planes in 
the HT phase; the domains become much larger, and without clear spin texture, in the LT 
phase [19-20]. Due to its very high Curie temperature, manipulation of spin texture in the 
HT phase provides a possible control of the topological band structure near room 
temperature. 

We begin by characterizing the bulk spin texture of the ferromagnetic domains with 
small-angle neutron scattering (SANS). Neutron scattering probes the magnetic 
correlations through the interaction between neutron spins and magnetic moments of the 
sample. The scattering cross-section is proportional to the square of the magnetic moment 
perpendicular to the neutron momentum transfer, which is in-plane, so that the moment 
within the Kagome planes contributes selectively to the scattering cross-section while c-
axis component of the moment always contributes, allowing measurements of magnetic 
textures. For simplicity, we redefine the a-axis to be along a nearest-neighbor Fe-Fe bond, 
and note that within the Fe Kagome plane there three equivalent axis choices a, , , 
separated by 120° rotations, as indicated in Fig. 1(b). With respect to the measurement 
geometry shown in Fig. 1(c), measurements were performed with the selected a axis 
oriented approximately in the horizontal or vertical direction, and magnetic field was 
always applied in the horizontal direction (8° to 12° difference between field and a-axis 
due to limitations of in situ sample-orientation control; see Fig 1 and supplementary 
materials). 
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Representative SANS data for Fe3Sn2 are shown in Fig. 1. The instrument was set 
such that the magnetic field direction was either approximately parallel [Fig. 1(h)-(l)] or 
perpendicular to Fe-Fe bond in Kagome plane [Fig. 1(m)-(q)], respectively. In zero 
magnetic field, the magnetic scattering is nearly isotropic at 100 K [Fig. 1(d)], consistent 
with the absence of magnetic texture in the LT phase [16,17], and it evolves to a much 
broader and anisotropic pattern above 100 K [Fig. 1(f), (g); see Supplementary Materials 
for additional data]. To further examine the magnetic phases, we used muon spin rotation 
spectroscopy to probe the temperature dependence of multiple local spontaneous field at 
the muon stopping site. The largest spontaneous field contribution is shown in Fig. 2(a), 
and the muons sense a sharp change slightly above 100 K, with a large relaxation rate in 
the vicinity of the transition. We will focus on behavior at 200 K, which is clearly in the 
HT phase.  

The anisotropic zero-field SANS patterns in Fig. 1(h) and (m) reflect the stripe-like 
domain texture of the HT phase. The minimum width of the scattering is parallel to the 
average orientation of the stripe domains, while the large momentum width is in the 
direction of small domain width.  The preferred alignment of stripe spin texture with one 
of the three a axes can be attributed to shape anisotropy. When the a axis (sample) is 
rotated by 90°, the anisotropy of the scattering follows. Applying a magnetic field along 
(approximately) the preferred a axis, the stripe domain orientation first becomes better 
aligned with the field, and the scattering narrows in the corresponding direction. With 
increasing field, the magnetic domains with moments along the field direction grow at the 
expense of the oppositely polarized domains. By 0.3 T, the parallel-magnetization 
domains dominate, and the scattering collapses to a narrow peak. When the field is 
applied in-plane but perpendicular to the preferred a axis, as in Fig. 1(o), (p), and (q), the 
domains rotate. Because the spins prefer to orient along Fe-Fe directions, the reoriented 
domains occur along the a′ and a″ axes, whose average direction is close to the field 
direction. For a quantitative analysis, the scattering cross-sections were fit with a Lattice 
Lorentzian model [21], for which scattering anisotropy quantifies phase disorder of the 
mesoscopic magnetic structure:  
                                      ~ ∑ 1 1                                  (1) 

 
where  and  labels lattice orientations.  and  are the corresponding correlation length 
and momentum transfer (Supplementary Materials). This model assumes a distribution of 
domains oriented along the a axes, with the number of domains along each direction and 
the average correlation lengths parallel and perpendicular to the a axes as fitting 
parameters. Figure 2(b) shows examples of constant intensity contours for each of the 3 
domain orientations at two different magnetic fields.  The field dependences of the 
domain populations and correlation lengths are plotted in Fig. 2(c) and (d). The change in 
the domain distribution as a function of magnetic field, ∆ , for each domain orientation 
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 depends on the applied field direction  as |sin |. The inset of Fig. 2(c) 
shows that the ratio ∆ /|sin | grows with field in a manner consistent with an 
effective three-domain (J=1) Brillouin function (Supplementary Materials). The fitted 
correlation lengths should largely reflect domain size, and we see in Fig. 2(d) that they 
grow as field increases.   

Having identified the field-dependent control of the magnetic domain textures in 
Fe3Sn2, we next investigate the electronic response at 200 K (Fig. 3). Resistivity was 
measured as a function of magnetic field strength and orientation, using the geometry 
shown in the inset of Fig. 3(d), where the current is applied along an a axis. The 
dominant effect is that the resistivity decreases as the field is applied [Fig. 3(c)]; this can 
be understood in terms of bulk weak localization for Dirac bands, as we will discuss 
below. In addition, the resistivity develops an anisotropic response to the orientation of 
the field relative to the current, as illustrated in Fig. 3(a) and (b). The amplitude of the 
anisotropic magnetoresistivity (MR) follows the bulk magnetization, as shown in Fig. 3d, 
while the angle of maximum MR  evolves as field increases. Reproducible butterfly 
patterns with an alternating sequence of positive and negative lobes of MR are observed 
for multiple samples. In the main text, we show results for samples S1 and S2 (additional 
S1, S2 data in Supplementary Materials with a third sample S3); differences result from 
current being aligned to an a axis that is or is not magnetically-preferred. These butterfly 
patterns are different from the angular magnetoresistivity for uniform ferromagnetic 
materials, for which the resistivity is usually two-fold symmetric and highest when the 
magnetic field is parallel to the current direction [22]. Moreover, the MR does not vary in 
a symmetric fashion with respect to the magnetically-preferred a axis. At 75 K, when 
magnetic spin texture is less clear in the LT phase, partial recovery of the 
magnetoresistivity to the lattice symmetry is observed.  

For further analysis, it is convenient to convert resistivity to conductivity, which is 
obtained by inverting the resistivity tensor. Because the transverse resistivity  is one 
order of magnitude smaller than the longitudinal resistivity  for Fe3Sn2, conductivity / ~1/ . We further define D · ,  where  is the c-axis 
lattice parameter. The field-induced changes in 2D conductivity for S1 and S2 are 
presented in Fig. 4(a) and (b), respectively. For each field direction, the conductivity 
change can be described by weak localization of Dirac bulk bands based on the Hikami-
Larkin-Nagaoka equation [23, 24] 

                          ∆ D ~ F F                     (2) 

where F ψ ln , and ψ is the digamma function.  is the phase-

coherence characteristic field and  is the spin-orbit characteristic field. The fitting 
parameters are the prefactor α (expected to be of order 1), , . For S1 and S2, the 
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fitted spin-orbit characteristic lengths /4  are similar and approximately 
direction independent (  ~ 12 nm for S1 and 9 nm for S2). However,  and α have 
notable angular dependences with a phase difference of ~ 240° for S1 and S2, 
corresponding to the difference in orientation of the magnetically-preferred a axis.  
features a maximum approximately along a axes, which means that the corresponding 
coherence length, /4 , is a minimum in this direction, with values ranging 
over 90-170 nm for S1 and 50-170 nm for S2 [Fig. 4(b)]. These numbers are intriguingly 
consistent with the half magnetic domain size (~ 100-200 nm) measured by SANS at 
small fields [Fig. 2(d)]. We tentatively compare  with the magnetic domain 
distribution and found that the two trace the same angular dependence (~|sin |), which is indicative of spin texture-determined quasiparticle phase coherence. The 
comparison is better for S1 than S2, which is associated with a more symmetric 
hexagonal sample shape of S1. Furthermore, we observe a modulation of prefactor α that 
also features an approximate two-fold symmetry [Fig. 4(c)]. The maximum of α does not 
align with the a axes but has a phase shift (~ -20 to -30°). As spin texture and bulk 
magnetization are much more effectively aligned along a axes, this phase shift remains a 
puzzle. Theoretically, it was proposed for materials with a large Dirac mass, weak 
localization of bulk bands dominates the electronic response [24], and a variation in Dirac 
mass impacts α [1,25,26]. The prefactor α extracted from the magnetoresistivity equals a 
single-band α multiplied by number of bands involved. We estimate the single band α 
based on previous calculations, without considering band interactions Fig. 4(d) [24]. 
Within this picture, the results suggest that, similar to α, the Dirac mass is also modulated 
with a two-fold symmetry, consistent with previous QPI measurements [7]. We illustrate 
the Dirac band dispersion with varying Dirac masses using modified pseudospin Dirac 
model [1,27] in Fig. 4(e). 

Having demonstrated the effective tuning of local magnetism and its direct control of 
electronic response in Fe3Sn2, our results have far reaching implications. Fe spins in 
Fe3Sn2 are separated by Sn into bilayer Kagome planes, and their magnetism and 
topological band structure are quasi-two-dimensional. Interestingly, similar magnetic and 
electronic properties have recently been discovered for other Kagome systems such as 
Co3Sn2S2 [10] and van der Waals metals such as Fe3GeTe2 [28,29], for which both low-
dimensional ferromagnetism and anomalous Hall effect have been observed. 
Manipulating the mesoscopic magnetic textures in these materials can give rise to a new 
control of their topological properties. Enhancing the measurable effects in electronic 
response tuned by a small applied magnetic field provides a feasible new platform for the 
realization of functional topological devices. 
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Fig. 1 Fe3Sn2 structure and representative SANS data. (a) Structure of Fe3Sn2. (b) Fe 
breathing Kagome lattice with short and long Fe bond lengths (red and blue, 2.59 Å and 
2.75 Å). a, ,  denote equivalent Fe-Fe bond directions and  denotes direction 
perpendicular to a. (c) Instrument setup for our SANS measurements. The neutron 
intensity is proportional to the square of magnetic moment M that perpendicular to 
neutron kinetic momentum transfer q. (d)-(g) SANS scattering patterns in zero magnetic 
field. (f), (g) show formation of bulk local magnetism when increasing temperature above 
100 K.  (h)-(l) and (m)-(q) Scattering patterns with magnetic fields parallel and 
perpendicular to Fe-Fe bond, respectively. (e), (i), (n) are corresponding fits of scattering 
patterns in d, h, m using the anisotropic Lattice Lorentzian model [22]. White arrows 
indicate the direction of Fe-Fe bond a. 
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Fig. 2 Magnetic properties. (a) Temperature dependence of the internal magnetic field 
( ) and µSR relaxation rate (λ), showing a phase transition around 100 K. (b) Neutron 
intensity for domain along a, ,  at 0 and 0.125 T.  (c) Spin direction (magnetic 
domain) distribution  along a, , . Insert shows the change of spin distribution Δ 0  divided by |sin |, where  is the magnetic field 
direction and  is the angular direction of a, a , a , respectively. |Δ /sin | 
for all spin configuration can be described by an effective three-domain (J=1) Brillouin 
function. (d) Parallel and perpendicular field dependences of magnetic correlation lengths 
(domain size). A rearrangement of spin correlation at mesoscopic scale is observed in the 
case of .  
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Fig. 3 In-plane magnetoresistivity. (a), (b) Angular variation of in-plane 
magnetoresistivity at 200 K in different magnetic fields for S1 and S2, respectively. The 
current is fixed along Fe-Fe bond a (0°) and the magnetic field rotates in the plane. The 
angle between field and current is shown as the polar axis. Magnitude of the butterfly-
wing pattern shows the variation of resistivity from its average value ∆ / , where ∆ .  is resistivity at each angle and  is the averaged resistivity for all 
field directions. Black arrows indicate ∆ /  maximum at angle max.  (c) Magnetic 
field dependence of , where ∆ 0 .  (d) Comparison 
between Fe moment and ∆ /  maximum as a function of field strength. Inset is an 
illustration of device geometry. 
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Fig. 4 Weak localization conductivity and Dirac band.  (a) Magnetic field dependence of 
conductivity of all field directions (  shown as the color bar) for S1 and S2, 
respectively.  ∆ D D D 0 , as explained in the text. Dashed lines 
present the upper (green) and lower (yellow) boundaries by Hikami-Larkin-Nagaoka 
equation [23, 24] for weak localization.  (b) Phase coherence characteristic field  and 
magnetic domain distribution measured by SANS.  (c) Prefactor α.  (d) Theoretical 
estimation of single-band α based on Dirac mass [24].  (e) Illustration of massive Dirac 
band structure with the pseudospin Dirac model [1, 25].  

 


