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We propose mechanisms for the spin Hall effect in metallic systems arising from the coupling
between conduction electrons and local magnetic moments that are dynamically fluctuating. Both
a side-jump-type mechanism and a skew-scattering-type mechanism are considered. In either case,
dynamical spin fluctuation gives rise to a nontrivial temperature dependence in the spin Hall con-
ductivity. This leads to the enhancement in the spin Hall conductivity at non-zero temperatures
near the ferromagnetic instability. The proposed mechanisms could be observed in 4d or 5d metallic
compounds.

The spin Hall (SH) effect is the generation of spin cur-
rent along the transverse direction by an applied electric
field [1, 2]. Because it allows us to manipulate magnetic
quanta, i.e., spins, without applying a magnetic field,
this would become a key component in creating efficient
spintronic devises. By combining the SH effect and its
reciprocal effect, the inverse SH effect [3], a variety of
phenomena have been demonstrated (for recent review,
see Refs. [4, 5]). As in the anomalous Hall effect [6],
the relativistic spin-orbit coupling (SOC) plays the fun-
damental role for the SH effect, and both intrinsic mech-
anisms [7, 8] and extrinsic mechanisms [9–12] have been
proposed. Whereas many theoretical studies considered
static disorder or impurities at zero temperature, the ef-
fect of non-zero temperature T in the SH effect has been
addressed using phenomenological electron-phonon cou-
pling [13, 14] or first-principle scattering approach [15].

At present, the intensity of the SH effect is too weak
for practical applications [16]. One of pathways to en-
hance the spin-charge conversion efficiency or the SH an-
gle ΘSH = σSH/σc, where σSH(c) corresponds to the
SH (charge) conductivity, is to reduce the charge con-
ductivity σc. For example, Ref. [17] proposed to use
5d transition-metal oxides, IrO2, where the strong SOC
comes from Ir, rather than metallic materials. The SH
effect in the surface state of topological insulators with
spin-momentum locking has been also studied [18]. More
recently, Jiao et al. reported the significant enhancement
in SH effect in metallic glasses at finite temperatures [19].
Because such enhancement is not expected in crystalline
systems [20], it was suggested that local structural fluc-
tuations [13, 21] are responsible for this effect, similar to
the phonon skew-scattering mechanism. Thus, the fluc-
tuations of lattice or some other degrees of freedom at
finite temperatures could provide a route to improve the
efficiency of the SH effect.

For magnetic systems, the effect of finite tempera-
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tures has been studied for the anomalous Hall effect in
terms of skew scattering [22] and resonant skew scatter-
ing [23–25]. Theories for the resonant skew scattering
were further developed by considering strong quantum
spin fluctuations for systems with the time-reversal sym-
metry (TRS), therefore for the SH effect rather than the
anomalous Hall effect [26–28]. Later, the relation be-
tween the anomalous Hall effect below the ferromagnetic
transition temperature TC and the SH effect above TC
was investigated by including non-local magnetic corre-
lations in Kondo’s model [29, 30]. A recent investigation
on FexPt1−x alloys also reported the enhancement in the
SH effect near TC [31]. So far, the magnetic fluctuation
at finite temperatures has been theoretically treated on
a single-site level [26–28] or using static approximations
[22–25, 29]. When localized moments have long-range
dynamical correlations near a magnetic instability, it is
required to go beyond such a treatment (for example, see
Refs. [32–35]). This could open new pathways for novel
spintronics.

In this paper, we address the effect of such magnetic
fluctuations onto the SH effect by calculating the SH con-
ductivity of a model system in which conduction elec-
trons are interacting with dynamically fluctuating local
magnetic moments. We start from defining our model
Hamiltonian and then identify two different mechanisms
for the SH effect. The similarity and dissimilarity with
the SH effect arising from impurity potential scattering or
phonon scattering are discussed. The SH conductivity is
computed using the Matsubara formalism by combining
the self-consistent renormalization theory [34]. We show
that the SH conductivity is enhanced at low temperatures
when the system is in close vicinity to the ferromagnetic
critical point at T = 0. Possible realization of this effect
in 4d or 5d metallic compounds is discussed.

Model and formalism: To be specific, we consider the
s-d or s-f Hamiltonian proposed by Kondo [22, 36], H =
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FIG. 1: Scattering processes involving (a) F0,1 terms, (b) F2

terms, and (c) F3terms. Yellow arrows indicate conduction
electrons, and green arrows indicate local moments. In the
F2(3) scattering processes, the electron deflection depends on
the direction of the local moment (the electron spin), leading
to the side-jump (skew-scattering)-type contribution to σSH .
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∑
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Here, a
(†)
kν is the annihilation (creation) operator of a con-

duction electron with momentum k and spin ν, εk =
~2k2

2m − µ is the dispersion relation measured from the
Fermi level µ with the carrier effective mass m, sνν′ =
1
2σνν′ is the conduction electron spin with σ the Pauli
matrices, and N(Nm) is the total number of lattice sites
(local moments). Jn is the local spin moment at position
Rn, when the SOC is weaker than the crystal field split-
ting and could be treated as a perturbation, or the local
total angular momentum, when the SOC is strong so that
the total angular momentum is a constant of motion. Pa-
rameters Fl are related to Fl defined in Ref. [22] as dis-
cussed in the supplementary material [36]. In this work,
we focus on three-dimensional systems. While the cur-
rent analysis could be applied to other dimensions, lower-
dimensional systems require more careful treatments.

In Equation (1), F0,1 terms correspond to the stan-
dard s-d or s-f exchange interaction, acting as the spin-
dependent potential scattering as schematically shown in
Fig. 1 (a). F2,3 terms represent the exchange of angu-
lar momentum between a conduction electron and a local
moment. These terms are odd (linear or cubic)-order in
Jn and s and induce the electron deflection depending on
the direction of Jn or s as depicted in Figs. 1 (b,c). As
discussed below, the F2 term and the F3 term, respec-
tively, generate the side-jump and the skew-scattering-
type contributions to the SH conductivity.

In order to see the different types of contributions,
we analyze the velocity operator, from which the charge
current and the spin current operators are defined. Im-
portantly, a side-jump-type contribution to the SH ef-
fect arises from the anomalous velocity as in the con-
ventional SH effect. The velocity operator is defined by
v = (i/~)[H, r]. Among various terms, lowest order con-
tributions to the spin Hall conductivity come from

v=
∑
k

~k
m
a†kνakν −

i

~N
∑
n

∑
k,k′

∑
ν,ν′

ei(k
′−k)·Rn

×
{
F2Jn + 2F3(Jn · sνν′)Jn

}
× (k′ − k)a†kνak′ν′ .(2)

Here, a term involving F1 is neglected because it is pro-
portional to (k + k′) and does not contribute to σSH at
the lowest order. The second terms involving F2,3 are
the anomalous velocity. The charge current and the spin
current are then given by using the velocity operator as

jc = −ev and js = −e{ 1
N

∑
k s

z
νν′a

†
kνakν′ ,v}, respec-

tively. Note that jc and js have the same dimension.
Now, we consider the side-jump-type mechanism aris-

ing from the anomalous velocity in Eq. (2) combined with
the spin-dependent potential scattering F0,1 in Eq. (1).
At this moment, one could notice some analogy between
the current model and the previous ones utilizing the
potential scattering Vn [10–12] as F0,1Jns ↔ Vn and
F2Jn ↔ λ2Vns, i.e., the spin s dependence is switched
from the anomalous velocity to the scattering term.
Therefore, the second-order processes involving F0,1 and
F2 terms could generate the side-jump-type contribu-
tion to the SH effect. The diagramatic representation
of this side-jump-type contribution to the SH conductiv-
ity is presented in Fig. 2. Note that this contribution is
O(F0,1F2〈JnJn′〉). If the F3 term in the anomalous ve-
locity is used, it would become O(F0,1F3〈JnJ2

n′〉), odd-
order in the local moment. Such a contribution vanishes
when the local moments have the TRS in a paramagnetic
phase above magnetic transition temperature.

How about the skew-scattering-type contribution? Un-
like the side-jump-type contribution, the F2 does not con-
tribute to σSH arising from the third-order perturbation
processes combined with F0,1 terms. This is because such
processes are O(F2

0,1F2〈JnJn′Jn′′〉) and vanish by the
TRS in the local moments. In fact, the skew-scattering-
type contribution arises from the third-order processes
involving F0,1 and F3 terms as O(F2

0,1F3〈JnJn′J2
n′′〉).

Therefore, such skew-scattering-type contributions are
possible without introducing unharmonic (third-order)
magnetic correlations, while it is second order in the spin
fluctuation propagator O(D2) as discussed below. This
contrasts with the phonon skew-scattering, where unhar-
monic phonon interactions are essential [13].

Matsubara formalism and spin fluctuation: In what fol-
lows, we use the Matsubara formalism to compute the SH
conductivity given by

σSH(iΩl) =
i

iΩlV

∫ 1/T

0

dτeiΩlτ 〈Tτ jsx(τ)jcy(0)〉, (3)
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FIG. 2: Diagrammatic representation for the side-jump con-
tribution. Solid (wavy) lines are the electron Green’s func-
tions (the spin fluctuation propagators). Squares (circles) are
the spin (charge) current vertices, with filled symbols repre-
senting the velocity correction with F2, i.e., side jump. Filled
triangles are the interaction vertices with F0,1.

FIG. 3: Diagrammatic representation for the skew-scattering
contribution. Filled pentagons are the interaction vertices
with F3. The definitions of the other symbols or lines are the
same as in Fig. 2.

where Ωl is the bosonic Matsubara frequency, and V is
the volume of the system. At the end of the analysis,
iΩl is analytically continued to real frequency as iΩl →
Ω + i0+. We will then consider the DC limit, Ω→ 0, to
obtain σSH .

This formalism allows one to treat conduction
electrons coupled with dynamically fluctuating lo-
cal moments Jn. To describe the latter, we con-
sider a generic Gaussian action given by AGauss =
1
2

∑
q,lD

−1
q (iωl)Jq(iωl)J−q(−iωl) with D−1

q (iωl) = δ +

Aq2 + |ωl|/Γq. Here, ωl = 2lπT is the bosonic Mat-
subara frequency, and A is introduced as a constant so
that Aq2 has the unit of energy. δ is the distance from
a ferromagnetically ordered state and is related to the
magnetic correlation length as ξ2 ∝ δ−1. Jq(iωl) is a
space and imaginary-time τ Fourier transform of Jn(τ),
where we made the τ dependence explicit. In princi-
ple, δ depends on temperature and is determined by
solving self-consistent equations for a full model includ-
ing non-Gaussian terms [32–35, 37]. Γq represents the
momentum-dependent damping. In clean metals close
to the ferromagnetic instability, Γq = Γq. When elas-
tic scatting exists due to impurities or disorders, q has
a small cutoff qc ∼ `−1 = 1/vF τc with ` being the
mean free path of conduction electrons, vF = ~kF /m
the Fermi velocity, and τc the carrier lifetime. There-
fore, the damping term at q <∼ qc has to be replaced
by Γqc [38]. With this propagator D, the spatial and
temporal correlation of Jn is given by 〈TτJn(τ)Jn′(0)〉 =
T
N

∑
q,l e

−iωlτ+iq·(Rn−Rn′ )Dq(iωl). Theoretical analyses
based on this model have been successful to explain many

experimental results on itinerant magnets [34].
Because of the phase factor eiq·(Rn−Rn′ ), the ferromag-

netic fluctuation is essential for the SH effect. When the
spin fluctuation has characteristic momentum Q 6= 0,
eiQ·(Rn−Rn′ ) has destructive effects.

Spin-Hall conductivity: With the above preparations,
now we proceed to examine the SH conductivity. Based
on the diagrammatic representations in Figs. 2 and 3,
σSH is expressed in terms of electron Green’s function G
and the propagator of local magnetic moments D. The
full expression is presented in Ref. [36].

We carry out the Matsubara summations, the energy
integrals and the momentum summations as detailed in
Ref. [36] to find

σside jumpSH ≈ 2e2n2
m

m
τc I(T, δ)

(
1

3
F0k

2
F −

2

5
F1k

4
F

)
F2NF

(4)
for the side-jump contribution and

σskew scat.SH ≈ 4e2~n3
m

m2
τ2
c I

2(T, δ)
(
F0+F1k

2
F

)2

F3
2k4
F

15
NF

(5)
for the skew scatting contribution. Here, nm = Nm/N
is the concentration of local moments, and NF =
mkF /2π

2~2 is the electron density of states per spin at
the Fermi level. The function I(T, δ) defined in Ref. [36]
is the direct consequence of the coupling between con-
duction electrons and the dynamical spin fluctuation.
There are a number of limiting cases where the analytic
form of I(T, δ) is available. For clean systems (Γq =
Γq, i.e., no momentum cutoff) at low temperatures,
where δ + A(aT/~vF )2 � ~vF /Γ is satisfied, I(T, δ) ≈

1
8πδ (aT/~vF )3 with a being the lattice constant. When
the system is on the quantum critical point for the fer-
romagnetic ordering, δ is scaled as δ ∝ T 4/3 [34]. Thus,
I(T, δ) ∝ T 5/3 is expected. For clean systems at high
temperatures, where δ + A(aT/~vF )2 � ~vF /Γ is satis-
fied, I(T, δ) ≈ ~vF

4π2Γδ2 (aT/~vF )3. At such high temper-
atures, δ is linearly dependent on T [34, 42]. Therefore,
one expects I(T, δ) ∝ T . Similar analyses are possible for
dirty systems, where Γq has a small momentum cutoff.
In this case, one expects I(T, δ) ∝ T at both low temper-
atures and high temperatures (see Ref. [36] for details).

In addition to I(T, δ), the temperature dependence of
σSH is induced by the carrier lifetime τc. This quantity
comes from several different contributions as

τ−1
c = τ−1

sf + τ−1
ee + τ−1

ep + τ−1
dis + . . . (6)

Here, τ−1
sf is from the scattering due to the spin fluctu-

ation. Using HK and the same level of approximation,

τ−1
sf is given by τ−1

sf ≈
2n2

m

~ I(T, δ)(F0+2F1k
2
F )2 [36]. τ−1

sf

and I(T, δ) have the same T dependence as schematically
shown in Fig. 4 (a). τ−1

ee and τ−1
ep are from the electron-

electron interactions and the electron-phonon interac-
tions, respectively. Their leading T dependence is given
by τ−1

ee ≈ τ−1
ee,0(T/TF )2 [39] and τ−1

ep ≈ τ−1
ep,0(T/TD)5

[40, 41], where TF (D) is the Fermi (Debye) temperature.
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FIG. 4: Schematic temperature dependence of (a) τ−1
sf and

I(T, δ), (b) τ−1
dis (dash line), τ−1

ee (dot line), and τ−1
ep (dash-dot

line), and (c) σskewscat.
SH . Red lines and blue lines correspond

to the clean system and the dirty system, respectively. At
a low (intermediate, high) temperature regime, τ−1

c is domi-
nated by τ−1

dis (τ−1
sf , τ−1

ee or τ−1
ep ), creating σskew scat.

SH,max at Tmax.

τ−1
dis is from the disorder effects, and its T dependence

is expected to be small. Figure 4 (b) summarizes the T
dependence of τ−1

dis,ee,ep.
The overall T dependence of σSH is determined by the

combination of I(T, δ) and τc. The strong enhancement is
thus expected at the ferromagnetic critical point, where
the magnetic correlation length ξ ∝ δ−1/2 diverges as
T−2/3. This results in τ−1

sf and hence the electrical re-

sistivity σ−1
c scaled as T 5/3 [42]. Since τ−1

sf ∝ I(T, δ),

σside jumpSH and σskew scat.SH are expected to be maximized
when the spin fluctuation dominates τc as

σside jumpSH,max ≈
e2~
m

F2k
2
F

3F0
NF (7)

and

σskew scatt.SH,max ≈ e2~3

m2nm

2F3k
4
F

15F2
0

NF , (8)

respectively, at low but non-zero temperature Tmax. This
Tmax is approximately given by TF (5τee,0/τdis)

1/2 when

TF � TD or TD(τep,0/2τdis)
1/5 when TF � TD. As

the temperature is lowered to zero, σSH goes to zero

as σside jumpSH ∝ τdisI(T, δ) ∝ T 5/3 and σskew scat.SH ∝
τ2
disI

2(T, δ) ∝ T 10/3 because of the non-zero τ−1
dis , and

the residual SH conductivity is due to disorders or im-
purities. At higher temperatures, the carrier lifetime is
suppressed by the electron-electron or electron-phonon
interaction, and therefore σSH is decreased. The over-
all T dependence of σskew scat.SH is schematically shown in
Fig. 4 (c).

In dirty systems, Γq involves a small cutoff momen-

tum. Because τdis is dominant, we expect σside jumpSH ∝ T
and σskew scat.SH ∝ T 2 at low temperatures as discussed
in Ref. [36]. When the temperature is increased above

T ∼ min{TF , TD}, σSH decreases with T because τc is
suppressed. Thus, σSH is expected to be maximized at
around Tmax as discussed for clean systems, yet the max-
imum value depends explicitly on τc’s. In fact, the en-
hancement in τ−1

sf,ee,ep with increasing T always induces
a momentum cutoff in the damping term Γq at high tem-
peratures. Therefore, we expect that clean systems and
dirty systems behave similarly at high temperatures, i.e.,

σside jumpSH ∝ τcT and σskew scat.SH ∝ τ2
c T

2.

Discussion: How realistic is the current spin fluctua-
tion mechanism? Here, we provide rough estimations of

σside jumpSH,max and σskew scat.SH,max . According to a free electron
model, F0 is expected to be ∼ 0.1 eV for both transi-
tion metal and actinide compounds [43]. (In Ref. [43],
J0, corresponding to F0 in this study, was estimated
to be 0.7 × 10−12 erg for the s-d interaction in Mn
and 2.5 × 10−13 erg for the s-f interaction in Gd.)
Since F2,3k

2
F involve the integral of higher-order spher-

ical Bessel functions, j1,3, i.e., p-wave scattering, than
F0, j0, i.e., s-wave scattering [22], F2(3)k

2
F would be

an order (two orders) of magnitude smaller than F0.
Therefore, taking a rough estimation F2k

2
F ∼ 0.01 eV,

F3k
2
F ∼ 0.001 eV and typical values of kF /π ∼ 109 m−1

and
~2k2F
2m = µ ∼ 10 eV [44] for s electrons in metal-

lic compounds, optimistic estimations are σside jumpSH,max ∼
103 Ω−1m−1 and σskew scat.SH,max ∼ 105 Ω−1m−1. The dif-

ference in magnitude between σside jumpSH,max and σskew scat.SH,max

comes from the small factor F2/F0 in σside jumpSH,max and the

large factor µ/F0 in σskew scat.SH,max . Thus, σskew scat.SH,max could

be comparable to the largest σSH reported so far [16].

Could there be systems that show the SH effect by
the proposed mechanisms? The crucial ingredients are
the coupling between conduction electrons and localized
but not ordered magnetic moments. Suitable candidate
materials would be 4d or 5d metallic compounds with
partially filled d shells, such as Ir, Pt, W and Re. Be-
cause of the large SOC than 3d compounds, the intrinsic
mechanism could contribute to the SH effect. One route
to enhance σSH further is doping with magnetic 3d tran-
sition metal elements to enhance the ferromagnetic spin
fluctuation. It would be possible to distinguish between
the intrinsic mechanism and the extrinsic mechanisms
discussed in this work by comparing crystalline samples
and disordered samples such as metallic glasses. In fact,
metallic glasses might be a good choice in trying to en-
hance the SH angle ΘSH . Since the carrier lifetime in
metallic glasses is dominated by the structure factor, the
temperature dependence of τc ∼ τdis is small [45, 46]. Us-
ing the same formalism, the longitudinal charge conduc-
tivity is given by σc = 2e2τck

3
F /3mπ

2. Therefore, ΘSH =
σSH/σc is more sensitive to the spin fluctuation contri-
bution than σSH itself. Since σskew scat.SH is dominant, the
spin fluctuation contribution I(T, δ) could be extracted
from σSH/σ

2
c . Recently, Ou et al. reported very large

ΘSH > 0.34 in FexPt1−x alloys near TC [31]. While the
detailed analyses remain to be carried out, with the typ-
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ical conductivity in their sample σc ∼ 106 Ω−1m−1 and
our theoretical σskew scat.SH,max ∼ 105 Ω−1m−1, ΘSH is esti-
mated to be ∼ 0.1, that is comparable to this report.

To summarize, we investigated the effect of fluctuat-
ing magnetic moments on the spin Hall effect in metallic
systems. We employed the microscopic model developed
by Kondo for the coupling between conduction electrons
and localized moments [22] and analyzed the fluctuation
of local moments using the self-consistent renormaliza-
tion theory by Moriya [34]. As in the conventional spin
Hall effect due to the impurity scattering, a side-jump-
type mechanism and a skew-scattering-type mechanism
appear. Because of the dynamical spin fluctuation, the
spin Hall conductivity has a nontrivial temperature de-
pendence, leading to the enhancement at nonzero tem-

peratures near the ferromagnetic instability. The skew
scattering mechanism we proposed could generate a siz-
able spin Hall effect.
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[11] A. Crépieux and P. Bruno, Phys. Rev. B 64, 014416

(2001).
[12] W.-K. Tse and S. Das Sarma, Phys. Rev. Lett. 96,

056601 (2006).
[13] C. Gorini, U. Eckern, and R. Raimondi, Phys. Rev. Lett.

115, 076602 (2015).
[14] C. Xiao, Y. Liu, Z.Yuan, S. A. Yang, and Q. Niu, Phys.

Rev. B 100, 085425 (2019).
[15] L. Wang, R. J. H. Wesselink, Y. Liu, Z. Yuan, K. Xia,

and P. J. Kelly, Phys. Rev. Lett. 116, 196602 (2016).
[16] A. Hoffmann, IEEE Trans.Magn.49, 5172, (2013).
[17] K. Fujiwara, Y. Fukuma, J. Matsuno, H. Idzuchi, Y. Ni-

imi, Y. Otani, and H. Takagi, Nat. Commun. 4, 1 (2013).
[18] T. T. Ong and N. Nagaosa, Phys. Rev. Lett. 121, 066603

(2018).
[19] W. Jiao, D. Z. Hou, C. Chen, H. Wang, Y. Z. Zhang, Y.

Tian, Z. Y. Qiu, S. Okamoto, K. Watanabe, A. Hirata,
T. Egami, E. Saitoh, and M. W. Chen, arXiv:1808.10371.

[20] L. Vila, T. Kimura, and Y. C. Otani, Phys. Rev. Lett.
99, 226604 (2007).

[21] G. V. Karnad, C. Gorini, K. Lee, T. Schulz, R. Lo Conte,
A. W. J. Wells, D.-S. Han, K. Shahbazi, J.-S. Kim, T. A.
Moore, H. J. M. Swagten, U. Eckern, R. Raimondi, and
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