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We construct a two-dimensional higher-order topological phase protected by a quasicrystalline
8-fold rotation symmetry. Our tight-binding model describes a superconductor on the Ammann–
Beenker tiling hosting localized Majorana zero modes at the corners of an octagonal sample. In order
to analyze this model, we introduce Hamiltonians generated by a local rule, and use this concept
to identify the bulk topological properties. We find a Z2 bulk topological invariant protecting the
corner modes. Our work establishes that there exist topological phases protected by symmetries
impossible in a crystal.

Introduction. — All topological phases known to date
can exist in crystalline systems. Strong topological insu-
lators (TI) occur in crystals [1, 2], in quasicrystals [3–9],
and even in amorphous systems [10–12], and show gapless
modes on any boundary, as a consequence of the topologi-
cally nontrivial gapped bulk. Weak topological insulators
and topological crystalline insulators, on the other hand,
rely on crystal symmetries [13–17]. Their gapless topo-
logical states appear only on boundaries preserving, at
least on average, a subset of lattice symmetries [18, 19].

In contrast, in higher-order topological insulators
(HOTI) both the bulk and the boundaries are gapped.
Instead, the protected gapless modes form at the in-
tersections of two or more boundaries—the corners and
hinges of a crystal [20–26]. Unlike in topological crys-
talline insulators, the corners/hinges may break the lat-
tice symmetry responsible for protecting the HOTI. In
those cases, the protection of the boundary modes relies
on a discrete symmetry of the entire finite-sized sample.
Examples of HOTIs enabled by global symmetries in-
clude a three-dimensional (3D) TI placed in a magnetic
field [27], hosting chiral hinge modes protected by inver-
sion symmetry, as well as elemental bismuth [28], with
helical hinge modes protected by time-reversal symme-
try (TRS), 3-fold rotation, and inversion.

Since the set of allowed crystal symmetries is known,
it is possible to list all weak, crystalline, and higher-order
topological insulators that appear in a crystal. This pro-
gram has been carried out throughout the past decade,
starting with the effect of single symmetries such as mir-
ror or inversion, followed by considering the effect of
any order-two symmetry [29, 30]. Today, the topolog-
ical classification spans all known non-magnetic crys-
talline compounds [31–33]. Furthermore, the possible
band topologies of free fermions have been listed for all
528 two-dimensional (2D) and 1651 3D magnetic space
groups [34].

In this work, we explore a new class of topological
phases by constructing a HOTI phase that is incom-

Figure 1. We define a tight-binding model on an 8-fold sym-
metric patch of the Ammann-Beenker tiling by associating a
site to each vertex and a hopping to each of the edges that con-
nect neighboring vertexes. Both panels show the real-space
distributions of the wavefunction amplitudes in the eight low-
est energy states of the model defined in Eqs. (1) and (5) for
∆ = t = 1 and µ = −1.7. Darker colors denote larger ampli-
tudes. For V = 0 (left), the system hosts counter-propagating
Majorana modes on any edge, protected by mirror symmetry.
Setting V = 1 (right) gaps out the edge, leading to a HOTI
phase. A single Majorana zero mode is localized to each of
the eight corners of the tiling.

patible with a crystalline symmetry, and was therefore
overlooked in the previous works. This topological phase
relies on the combination of an 8-fold rotation and an in-
plane reflection. Its hallmark signature is the presence
of eight Majorana zero modes bound to the corners of
a finite-sized octagonal sample. These modes are robust
against any symmetry-preserving perturbation, provided
the bulk remains gapped. Because 8-fold rotations are
forbidden in two dimensions by the crystallographic re-
striction theorem, the resulting phase has no crystalline
counterpart. We propose a modified notion of symmetry
protection of HOTI phases applicable to locally gener-
ated quasiperiodic Hamiltonians. Using this, we show
that the protection of the corner modes does not rely on
global symmetry of the sample. We pin down the non-
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trivial nature of this phase by studying zero modes at
topological defects and identifying a bulk topological in-
variant that determines the formation of Majorana corner
modes.

Model. — Our starting point is a tight-binding model
describing a pair of oppositely spin-polarized p± ip topo-
logical superconductors in class D [35]. The real-space
Bogoliubov-de Gennes Hamiltonian is obtained by asso-
ciating sites and hoppings to the vertexes and edges of an
8-fold symmetric Ammann–Beenker (AB) tiling [36, 37]
(see Fig. 1):

H =
∑
j

Ψ†jHjΨj +
∑
〈j,k〉

Ψ†jHjkΨk, (1)

with Ψ†j = (ψ†j,↑, ψj,↑, ψ
†
j,↓, ψj,↓), ψ

†
j,σ the fermionic cre-

ation operator for a particle on site j with spin σ, and
with 〈. . .〉 denoting sites connected by a bond (see Fig. 1).
The onsite Hamiltonian is

Hj = µσzτz, (2)

where µ is the chemical potential, and Pauli matrices τ
and σ act on the electron-hole and spin degrees of free-
dom, respectively. The hopping terms have the form

Hjk =
t

2
σzτz +

∆

2i
[cos(αjk)σzτx + sin(αjk)σzτy] , (3)

where t is the normal hopping strength, ∆ the p-wave
pairing strength, and αjk is the angle formed by the hop-
ping with respect to the horizontal direction.

The system obeys particle-hole symmetry (PHS),
{H,P} = 0, with an anti-unitary operator P = τxσ01K,
where K denotes complex conjugation and 1 is the iden-
tity operator in the space spanned by the sites of the
tiling. In addition, Eq. (1) has an in-plane mirror symme-
try, [H,M ] = 0, with M = τ0σz1. Moreover, due to the
shape of the tiling, the finite-sized model obeys a global
8-fold rotation symmetry about its center, [H, C8] = 0.
The rotation operator is

C8 = exp
(
−iπ

8
σ0τz

)
R, (4)

where R is an orthogonal matrix permuting the sites of
the tiling to rotate the whole system by an angle of π/4.

For t = ∆ = 1 and µ = −1.7, the model describes a
bilayer system of two 2D class D topological supercon-
ductors with opposite Chern numbers, hosting a pair of
counter-propagating Majorana edge modes on its bound-
ary (see Fig. 1). The edge modes are prevented from gap-
ping out by the in-plane reflection symmetry. To obtain a
HOTI, we introduce a perturbation that breaks both the
reflection and rotation symmetries, but preserves their
product C8M . We modify the hoppings by adding the
term

V =
∑
〈j,k〉

Ψ†jVjkΨk, Vjk =
V

2
σyτ0 cos (4αjk) . (5)

It anti-commutes with the reflection symmetry,
{V,M} = 0, and opens a gap in the edge spec-
trum. However, it also anti-commutes with the 8-fold
rotation, such that the gap of the edge states changes
sign a total of eight times across the perimeter of the
system. This results in the formation of eight Majorana
zero modes, as shown in Fig. 1. These modes are
localized at the corners of the octagonal sample and are
separated from all other states by an energy gap.

Protected corner modes. — Majorana zero modes
bound to the corners of the octagonal tiling are a man-
ifestation of the nontrivial bulk topology of the HOTI.
As long as the tiling obeys PHS and the global C8M
constraint, the gapless corner states cannot be removed
by any perturbation restricted to the system bound-
ary. There is an intuitive explanation for this (see also
Ref. [22]): the minimal surface manipulation compatible
with PHS and C8M consists of gluing a Kitaev chain
onto each of the eight edges of the tiling, such that ad-
jacent chains are mapped onto each other under C8M .
This process changes the number of corner Majoranas by
an even number and the original zero modes cannot gap
out. This suggests that the octagonal HOTI has a Z2

classification.

To verify that the corner states are not merely an ar-
tifact of an exact C8M symmetry of the entire sample,
we also consider asymmetric cutouts of the quasicrys-
tal. The quasiperiodicity of a quasicrystal implies that
any finite region of an infinite sample repeats infinitely
many times [4]. Hence, there are infinitely many loca-
tions in the quasicrystal that look identical to the vicin-
ity of a corner of an exactly 8-fold symmetric sample at a
scale much larger than the extent of the bound state. By
the locality of the Hamiltonian, such a corner (in either
a semi-infinite system or an asymmetric finite sample)
will also host a Majorana zero mode, as illustrated in
Fig. 2(a). These zero modes are “extrinsic” [25], as there
is no exact symmetry relating the two edges emanating
from such a corner. This implies that, analogous to crys-
talline HOTIs, attaching a Kitaev wire to one of the edges
but not to the other does not break any symmetries and
the zero mode can, in principle, be gapped out by an
edge perturbation.

Therefore, we impose the physical restriction of
quasiperiodicity on the Hamiltonians we consider in the
following. We demand that the Hamiltonian is generated
by a local, 8-fold symmetric rule: every term is deter-
mined by the quasicrystal configuration in a finite radius
environment, in a symmetric fashion. The quasiperiod-
icity of the tiling means that the semi-infinite edges em-
anating from an approximately symmetric corner, while
not exact symmetry images, are indistinguishable by only
inspecting finite regions. This prevents a deformation of
the Hamiltonian that produces a gapped Kitaev chain
on only one of these edges, resulting in protected corner
modes.
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(a) (b)

Figure 2. Wave function amplitudes of 8 zero modes in various
finite geometries. a) Asymmetric sample with corners locally
identical to corners of a symmetric sample. b) Sample with a
C8M defect. Away from the defect at the center, the system
is locally identical to the original model. Inset: Sample with
one octant cut out, but without gluing together the two sides
of the cut.

Disclination modes — We now prove that the phase
discussed above is indeed a bulk topological phase pro-
tected by C8M symmetry by showing that point-like
fluxes (topological defects) of this symmetry capture a
Majorana zero mode [38, 39]. The C8M flux is inserted
into the system by the following procedure (similar to
Ref. [40]): first, we take a large 8-fold symmetric sample
and cut out one octant bordered by a cut C, connecting
the center of the tiling with the boundary, and by its
symmetry image C8C (see inset of Fig. 2(b)). Then, we
glue the two sides of the cut back together by identifying
sites on the two sides of the cut related by C8M symme-
try. The hoppings across the cut areHC8j,k = UC8MHj,k,
where C8j is the C8 image of site j and UC8M is the on-
site unitary action of the C8M symmetry. The cut C,
similar to a Dirac string, is not detectable locally. In-
deed, applying a basis transformation UC8M to a single
site neighboring the cut (and identity elsewhere) moves
the site to the other side of the cut. This makes the
location of the cut basis dependent and locally indistin-
guishable from the bulk with no cut, with the exception
of the center of the system where the cut terminates.

As illustrated in Fig. 2(b), the resulting sample has
eight Majorana zero modes: seven at the corners and one
at the disclination core. The disclination mode cannot be
removed without closing the bulk gap, proving that the
HOTI phase is separated from the trivial phase by a bulk
phase transition.

Bulk topological invariant. — We now develop an
invariant that characterizes the bulk topology of the
quasicrystalline system. For this purpose, we consider
the momentum-dependent effective Hamiltonian Heff =
G−1

eff , defined through the projection of the single-particle

Green’s function onto plane-wave states:

Geff(k)n,m = 〈k, n|G |k,m〉 , (6)

where |k, n〉 is a normalized plane-wave state with
nonzero amplitude only in the local orbital n, and G =
limη→0 (H + iη)

−1
is the zero-energy Green’s function of

the full Hamiltonian (see Supplemental Material [41]).
An important property of Heff is that its gap closes

only when the gap of the full Hamiltonian closes. We are
going to use this to construct topological invariants: if an
invariant defined in terms of Heff can only change when
the gap in Heff closes, it implies a bulk phase transition of
the full Hamiltonian. The classification we derive below
is thus a subset of the full topological classification of
C8M symmetric systems.

To define the topological invariant we inspect the sym-
metry representations of C8M and P acting on Heff at
the C8-invariant momentum k = 0 [38]. The eigen-
values of C8M have the form ωn = exp

(
iπ8n

)
, with

n = [±1,±3,±5,±7], and eigenstates |n〉 and |−n〉 are
related by P. By restricting Heff(k = 0) to C8M eigen-
subspaces of ω±n, we calculate the zero-dimensional class
D invariant of each block, which is the sign of the Pfaf-
fian in the Majorana basis. This yields νn,k=0 = ±1,
for n ∈ [1, 3, 5, 7], resulting in a Z4

2 classification. In our
model, Heff(k = 0) has two invariant blocks correspond-
ing to pairs of n = ±1 and ±7, respectively, while there
are no states in the local Hilbert space corresponding
to the other C8M eigenstates with n = ±3,±5. We find
that Heff(k = 0) goes through a band inversion at µ ≈ −2
when both Pfaffians switch sign. This, however, cannot
be a stable topological invariant, as it also distinguishes
different atomic insulators with on-site Hamiltonians of
opposite sign and vanishing hoppings.

To provide an invariant that is insensitive to addi-
tion of atomic insulators, we invoke the cut-and-project
method generating the 2D AB tiling from a 4-dimensional
(4D) cubic lattice (see Ref. 4 and Supplemental Mate-
rial [41]). Plane-wave states in the 4D Brillouin zone
provide a complete basis for all states on the 4D lattice,
and an overcomplete basis for the quasicrystal. Some
of these plane waves cannot be exactly represented by
purely 2D plane waves, but can be approximated by those
to arbitrary precision. We call these patterns of com-
plex phases on the quasicrystal generalized plane waves.
The generalized plane waves important for the topo-
logical invariant are the ones at 4D momenta invariant
under C8 modulo reciprocal lattice vectors. Those are
Γ = (0, 0, 0, 0) ≡ 0, which we have already discussed
above, and Π = (π, π, π, π). The latter produces alternat-
ing ± signs on nearest-neighbor sites of the quasicrystal.
Looking at the symmetry representation of Heff(k = Π),
we find a band inversion at µ ≈ 2, which is similar to
the one of Heff(k = 0) at µ ≈ −2. As a consequence,
νn,0 = −νn,Π for n ∈ [1, 7] in the range −2 . µ . 2. Sta-
ble Z2 invariants are therefore defined by νn = νn,0/νn,Π.
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Figure 3. Topological phase transitions in the quasicrystal
HOTI model as a function of chemical potential µ with t = 1,
∆ = 2 and V = 1.5. Top panel: spectrum of the 24 states
closest to zero energy in a finite sample. The line color shows
the weight of the state on the corners (red), edges (blue) and
bulk (black). The bulk gap closes at µ ≈ ±2, delimiting the
phase with eight Majorana corner modes. The edge gap closes
at µ ≈ ±0.9 and the bulk gap closes around µ = 0 without af-
fecting the topological properties. Middle panel: evolution of
the bulk density of states, with lighter colors denoting larger
densities. Overlaid is the spectrum of the effective Hamil-
tonian at k = 0 (red) and k = Π (pink). Bottom panel:
topological invariants ν1,0, ν1,Π and ν1 = ν1,0/ν1,Π.

In the atomic limit, we have νn = 1. Thus, the non-
trivial value signals an obstructed atomic limit. More-
over, we find that phases with both gapped bulk and
gapped edges have only two independent invariants, since
ν1 = ν7 and ν3 = ν5 (see Supplemental Material [41]). In
the topological phase, our model has ν1 = ν7 = −1 and
ν3 = ν5 = +1, as illustrated in Fig. 3. The Z2 invariant
characterizing the presence of corner Majoranas is the
product ν1ν3, while the corner modes do not distinguish
between other phases in the richer Z2

2 bulk classification.

Discussion. — We have demonstrated the existence of
a quasicrystalline higher-order topological phase. The
topological protection of this phase explicitly requires
broken translation symmetry, since it is protected by a
point group symmetry incompatible with any periodic
crystal structure in two or three dimensions. In the non-
trivial phase, both the bulk and the edges are gapped,
whereas eight Majorana zero modes are bound to the
corners of the octagonal tiling. These modes are asso-
ciated with a nontrivial bulk invariant and are robust
against symmetry-preserving perturbations that do not
close the bulk gap.

While we have treated the special case of a class D
topological superconductor with C8M symmetry, the
ideas we have presented generalize to a wider range of
systems. It should be possible to extend our work to

other symmetry classes, other point group symmetries,
and higher dimensions. We note, however, that the basic
line of argument we used to construct the model, reliant
on an alternating sign of the mass term at the boundary,
does not work for odd rotations, e.g. C5. For this, it
would be necessary to introduce topological protection
in another manner.

Our investigation opens several directions for future
work. First, while we have shown a single example as a
proof of principle, the range of possible, purely aperiodic
topological insulators and semimetals remains unknown.
Furthermore, it is also unclear which tools would be re-
quired to characterize all such systems in practice, as
most existing methods for obtaining topological invari-
ants in the presence of point group symmetries explicitly
rely on momentum space. We have presented one possi-
ble approach applicable to translation-symmetry break-
ing systems. One might also consider real-space topo-
logical invariants, similar to the ones defined for finite
systems with boundaries, as done in Ref. 42 for strong
topological insulators. Another interesting direction to
explore would be to consider classes of quasicrystals
obtained by a cut-and-project method from a higher-
dimensional periodic lattice, such as the one we used
here, and attempt a topological classification via dimen-
sional reduction. The results of this approach will, how-
ever, be limited, since there are quasicrystals not obtain-
able by such a method. Lastly, the new methods explored
here are applicable to crystalline systems as well. To
show that we found a bulk topological phase, we intro-
duced the notion of a quasiperiodic Hamiltonian, where
terms are only sensitive to the quasicrystal configuration
in a finite radius environment. This notion of locality also
applies to crystalline, disordered, and amorphous mate-
rials, promising a new direction to establish the topo-
logical protection of “extrinsic” corner modes via bulk
invariants.

Finally, there is the question of how such a topolog-
ical phase may be observed experimentally. While we
can predict that this C8M protected phase will never be
realized in any crystalline system, it may be possible to
obtain 8-fold symmetry protected corner modes in the re-
cently discovered superconducting quasicrystals [43, 44].
Alternatively, one may consider a variety of so-called
“topological simulators”, including ultracold atoms [45–
47], photonic crystals [48, 49], coupled electronic cir-
cuit elements (called topolectric circuits [50]), as well as
acoustic and mechanical meta-materials [51, 52]. These
systems allow for a site connectivity bypassing the chem-
ical constraints inherent in crystal growth processes, and
have been successfully used to demonstrate both higher-
order topological phases [53–55], as well as topologically
nontrivial quasicrystals [56, 57].

Author contributions. — I. C. Fulga constructed the
model used in the manuscript, initiated, and oversaw the
project. All authors took part in an extensive survey



5

of topological invariants to characterize the system. D.
Varjas conceived and carried out the analysis based on
topological defects and bulk topological invariants. I. C.
Fulga and D. Varjas performed the numerical calcula-
tions, D. Varjas and A. Akhmerov produced the figures
in the manuscript. All authors took part in formulating
the results and writing the manuscript.

Acknowledgments. — We thank Ulrike Nietsche for
technical assistance. We are grateful to P. Perez-
Piskunow for helpful discussions about the kernel poly-
nomial method (KPM) and the use of his KPM Green’s
function code. We thank P. Perez-Piskunow and M.
Fruchart for sharing the KPM-based method to cal-
culate the Chern number in disordered systems [58].
We thank B. Roy and V. Juricic for discussions about
Ref. 59, a manuscript which motivated this project. This
work was supported by the DFG through the Würzburg-
Dresden Cluster of Excellence on Complexity and Topol-
ogy in Quantum Matter – ct.qmat (EXC 2147, project-id
39085490). This work was supported by ERC Starting
Grant 638760, NWO VIDI grant 680-47-53, the US Of-
fice of Naval Research, and through the subsidy for top
consortia for knowledge and innovation (TKl toeslag) by
the Dutch ministry of economic affairs.

Data availability. — The data shown in the figures,
as well as the code generating all of the data is available
at [60].

∗ Electronic address: dvarjas@gmail.com
[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological

insulators, Rev. Mod. Phys. 82, 3045 (2010).
[2] X.-L. Qi and S.-C. Zhang, Topological insulators and su-

perconductors, Rev. Mod. Phys. 83, 1057 (2011).
[3] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn,

Metallic phase with long-range orientational order and no
translational symmetry, Phys. Rev. Lett. 53, 1951 (1984).

[4] M. Baake and U. Grimm, Aperiodic Order. Vol 1. A
Mathematical Invitation (Cambridge University Press,
Cambridge, UK, 2013), Vol. 1.

[5] M. Zoorob, M. Charlton, G. Parker, J. Baumberg, and M.
Netti, Complete photonic bandgaps in 12-fold symmetric
quasicrystals, Nature 404, 740 (2000).

[6] W. Steurer and D. Sutter-Widmer, Photonic and
phononic quasicrystals, J. Phys. D Appl. Phys. 40, R229
(2007).

[7] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O.
Zilberberg, Topological states and adiabatic pumping in
quasicrystals, Phys. Rev. Lett. 109, 106402 (2012).

[8] M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y.
Silberberg, Observation of topological phase transitions
in photonic quasicrystals, Phys. Rev. Lett. 110, 076403
(2013).

[9] I. C. Fulga, D. I. Pikulin, and T. A. Loring, Aperiodic
weak topological superconductors, Phys. Rev. Lett. 116,
257002 (2016).

[10] I. Fulga, B. van Heck, J. Edge, and A. Akhmerov, Sta-
tistical topological insulators, Phys. Rev. B 89, 155424

(2014).
[11] A. Agarwala and V. B. Shenoy, Topological insulators in

amorphous systems, Phys. Rev. Lett. 118, 236402 (2017).
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nyy, B. Büchner, K. Koepernik, C. Ortix, M. Richter, and
J. van den Brink, Stacked topological insulator built from
bismuth-based graphene sheet analogues, Nat. Mater. 12,
422 (2013).

[15] L. Fu, Topological crystalline insulators, Phys. Rev. Lett.
106, 106802 (2011).

[16] T. L. Hughes, E. Prodan, and B. A. Bernevig, Inversion-
symmetric topological insulators, Phys. Rev. B 83,
245132 (2011).

[17] C.-K. Chiu, J. C. Teo, A. P. Schnyder, and S. Ryu, Clas-
sification of topological quantum matter with symmetries,
Rev. Mod. Phys. 88, 035005 (2016).

[18] Z. Ringel, Y. E. Kraus, and A. Stern, Strong side of weak
topological insulators, Phys. Rev. B 86, 045102 (2012).

[19] A. Lau, J. van den Brink, and C. Ortix, Topological mir-
ror insulators in one dimension, Phys. Rev. B 94, 165164
(2016).

[20] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes,
Quantized electric multipole insulators, Science 357, 61
(2017).

[21] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes,
Electric multipole moments, topological multipole mo-
ment pumping, and chiral hinge states in crystalline in-
sulators, Phys. Rev. B 96, 245115 (2017).

[22] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang,
S. S. P. Parkin, B. A. Bernevig, and T. Neupert, Higher-
order topological insulators, Sci. Adv. 4, eaat0346 (2018).

[23] L. Trifunovic and P. W. Brouwer, Higher-order
bulk-boundary correspondence for topological crystalline
phases, Phys. Rev. X 9, 011012 (2019).

[24] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and
P. W. Brouwer, Reflection-symmetric second-order topo-
logical insulators and superconductors, Phys. Rev. Lett.
119, 246401 (2017).

[25] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer,
Second-order topological insulators and superconductors
with an order-two crystalline symmetry, Phys. Rev. B
97, 205135 (2018).

[26] S. Franca, J. van den Brink, and I. C. Fulga, An anoma-
lous higher-order topological insulator, Phys. Rev. B 98,
201114 (2018).

[27] M. Sitte, A. Rosch, E. Altman, and L. Fritz, Topological
insulators in magnetic fields: Quantum Hall effect and
edge channels with a nonquantized θ term, Phys. Rev.
Lett. 108, 126807 (2012).

[28] F. Schindler et al., Higher-order topology in bismuth, Nat.
Phys. 14, 918 (2018).

[29] C.-K. Chiu, H. Yao, and S. Ryu, Classification of topo-
logical insulators and superconductors in the presence of
reflection symmetry, Phys. Rev. B 88, 075142 (2013).

[30] K. Shiozaki and M. Sato, Topology of crystalline insu-
lators and superconductors, Phys. Rev. B 90, 165114
(2014).

[31] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and
R.-J. Slager, Topological classification of crystalline insu-

mailto:dvarjas@gmail.com
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
https://link.aps.org/doi/10.1103/RevModPhys.83.1057
https://link.aps.org/doi/10.1103/RevModPhys.83.1057
https://link.aps.org/doi/10.1103/RevModPhys.83.1057
https://link.aps.org/doi/10.1103/RevModPhys.83.1057
https://link.aps.org/doi/10.1103/PhysRevLett.53.1951
https://link.aps.org/doi/10.1103/PhysRevLett.53.1951
https://link.aps.org/doi/10.1103/PhysRevLett.53.1951
https://link.aps.org/doi/10.1103/PhysRevLett.53.1951
https://www.nature.com/articles/35008023
https://www.nature.com/articles/35008023
https://www.nature.com/articles/35008023
https://www.nature.com/articles/35008023
https://iopscience.iop.org/article/10.1088/0022-3727/40/13/R01/meta
https://iopscience.iop.org/article/10.1088/0022-3727/40/13/R01/meta
https://iopscience.iop.org/article/10.1088/0022-3727/40/13/R01/meta
https://iopscience.iop.org/article/10.1088/0022-3727/40/13/R01/meta
https://link.aps.org/doi/10.1103/PhysRevLett.109.106402
https://link.aps.org/doi/10.1103/PhysRevLett.109.106402
https://link.aps.org/doi/10.1103/PhysRevLett.109.106402
https://link.aps.org/doi/10.1103/PhysRevLett.109.106402
http://link.aps.org/doi/10.1103/PhysRevLett.110.076403
http://link.aps.org/doi/10.1103/PhysRevLett.110.076403
http://link.aps.org/doi/10.1103/PhysRevLett.110.076403
http://link.aps.org/doi/10.1103/PhysRevLett.110.076403
https://link.aps.org/doi/10.1103/PhysRevLett.116.257002
https://link.aps.org/doi/10.1103/PhysRevLett.116.257002
https://link.aps.org/doi/10.1103/PhysRevLett.116.257002
https://link.aps.org/doi/10.1103/PhysRevLett.116.257002
https://link.aps.org/doi/10.1103/PhysRevB.89.155424
https://link.aps.org/doi/10.1103/PhysRevB.89.155424
https://link.aps.org/doi/10.1103/PhysRevB.89.155424
https://link.aps.org/doi/10.1103/PhysRevB.89.155424
https://link.aps.org/doi/10.1103/PhysRevLett.118.236402
https://link.aps.org/doi/10.1103/PhysRevLett.118.236402
https://link.aps.org/doi/10.1103/PhysRevLett.118.236402
https://link.aps.org/doi/10.1103/PhysRevLett.118.236402
https://doi.org/10.1038/s41467-018-04532-x
https://doi.org/10.1038/s41467-018-04532-x
https://doi.org/10.1038/s41467-018-04532-x
https://link.aps.org/doi/10.1103/PhysRevLett.98.106803
https://link.aps.org/doi/10.1103/PhysRevLett.98.106803
https://link.aps.org/doi/10.1103/PhysRevLett.98.106803
https://link.aps.org/doi/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1038/nmat3570
http://dx.doi.org/10.1038/nmat3570
http://dx.doi.org/10.1038/nmat3570
http://dx.doi.org/10.1038/nmat3570
https://link.aps.org/doi/10.1103/PhysRevLett.106.106802
https://link.aps.org/doi/10.1103/PhysRevLett.106.106802
https://link.aps.org/doi/10.1103/PhysRevLett.106.106802
https://link.aps.org/doi/10.1103/PhysRevLett.106.106802
http://link.aps.org/doi/10.1103/PhysRevB.83.245132
http://link.aps.org/doi/10.1103/PhysRevB.83.245132
http://link.aps.org/doi/10.1103/PhysRevB.83.245132
http://link.aps.org/doi/10.1103/PhysRevB.83.245132
https://link.aps.org/doi/10.1103/RevModPhys.88.035005
https://link.aps.org/doi/10.1103/RevModPhys.88.035005
https://link.aps.org/doi/10.1103/RevModPhys.88.035005
https://link.aps.org/doi/10.1103/RevModPhys.88.035005
https://link.aps.org/doi/10.1103/PhysRevB.86.045102
https://link.aps.org/doi/10.1103/PhysRevB.86.045102
https://link.aps.org/doi/10.1103/PhysRevB.86.045102
https://link.aps.org/doi/10.1103/PhysRevB.86.045102
http://dx.doi.org/10.1103/PhysRevB.94.165164
http://dx.doi.org/10.1103/PhysRevB.94.165164
http://dx.doi.org/10.1103/PhysRevB.94.165164
http://dx.doi.org/10.1103/PhysRevB.94.165164
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://link.aps.org/doi/10.1103/PhysRevB.96.245115
https://link.aps.org/doi/10.1103/PhysRevB.96.245115
https://link.aps.org/doi/10.1103/PhysRevB.96.245115
https://link.aps.org/doi/10.1103/PhysRevB.96.245115
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://link.aps.org/doi/10.1103/PhysRevX.9.011012
https://link.aps.org/doi/10.1103/PhysRevX.9.011012
https://link.aps.org/doi/10.1103/PhysRevX.9.011012
https://link.aps.org/doi/10.1103/PhysRevX.9.011012
https://link.aps.org/doi/10.1103/PhysRevLett.119.246401
https://link.aps.org/doi/10.1103/PhysRevLett.119.246401
https://link.aps.org/doi/10.1103/PhysRevLett.119.246401
https://link.aps.org/doi/10.1103/PhysRevLett.119.246401
https://link.aps.org/doi/10.1103/PhysRevB.97.205135
https://link.aps.org/doi/10.1103/PhysRevB.97.205135
https://link.aps.org/doi/10.1103/PhysRevB.97.205135
https://link.aps.org/doi/10.1103/PhysRevB.97.205135
https://link.aps.org/doi/10.1103/PhysRevB.98.201114
https://link.aps.org/doi/10.1103/PhysRevB.98.201114
https://link.aps.org/doi/10.1103/PhysRevB.98.201114
https://link.aps.org/doi/10.1103/PhysRevB.98.201114
https://link.aps.org/doi/10.1103/PhysRevLett.108.126807
https://link.aps.org/doi/10.1103/PhysRevLett.108.126807
https://link.aps.org/doi/10.1103/PhysRevLett.108.126807
https://link.aps.org/doi/10.1103/PhysRevLett.108.126807
https://link.aps.org/doi/10.1103/PhysRevLett.108.126807
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41567-018-0224-7
https://link.aps.org/doi/10.1103/PhysRevB.88.075142
https://link.aps.org/doi/10.1103/PhysRevB.88.075142
https://link.aps.org/doi/10.1103/PhysRevB.88.075142
https://link.aps.org/doi/10.1103/PhysRevB.88.075142
https://link.aps.org/doi/10.1103/PhysRevB.90.165114
https://link.aps.org/doi/10.1103/PhysRevB.90.165114
https://link.aps.org/doi/10.1103/PhysRevB.90.165114
https://link.aps.org/doi/10.1103/PhysRevB.90.165114


6

lators through band structure combinatorics, Phys. Rev.
X 7, 041069 (2017).

[32] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-
based indicators of band topology in the 230 space groups,
Nat. Commun. 8, (2017).

[33] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z.
Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, Topo-
logical quantum chemistry, Nature 547, 298 (2017).

[34] H. Watanabe, H. C. Po, and A. Vishwanath, Structure
and topology of band structures in the 1651 magnetic
space groups, Sci. Adv. 4, eaat8685 (2018).

[35] N. Read and D. Green, Paired states of fermions in two
dimensions with breaking of parity and time-reversal sym-
metries and the fractional quantum Hall effect, Phys.
Rev. B 61, 10267 (2000).
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