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The flow of viscoelastic fluids in channels and pipes remain poorly understood, particularly at
low Reynolds numbers. Here, we investigate the flow of polymeric solutions in straight channels
using pressure measurements and particle tracking. The flow friction factor fη versus flow rate
exhibits two regimes: a transitional regime marked by rapid increase in drag, and a turbulent-like
regime characterized by a sudden decrease in drag and a weak dependence on flow rate. Lagrangian
trajectories show finite transverse modulations not seen in Newtonian fluids. These curvature per-
turbations far downstream can generate sufficient hoop stresses to sustain the flow instabilities in
the parallel shear flow.

Fluids containing polymers are found in everyday life
(e.g. foods and cosmetics) and in technology spanning
the oil, pharmaceutical, and chemical industries. A
marked characteristic of polymeric fluids is that they
often exhibit non-Newtonian flow behavior such as vis-
coelasticity [1, 2]. Mechanical (elastic) stresses in such
fluids are history-dependent and develop with time scale
λ, which is proportional to the time needed for a single
polymer molecule to relax to its equilibrium state in di-
lute solutions. These stresses grow nonlinearly with shear
rate and can dramatically change the flow behavior [1, 2].
For example, the presence of polymer in turbulent pipe
flows can suppress eddies and lead to large reduction in
flow friction [3, 4]. At low Reynolds numbers (Re), where
inertia is negligible, elastic stresses can lead to flow in-
stabilities not found in ordinary fluids like water [5–12].
They can also exhibit a new type of disordered flow –
elastic turbulence – a turbulent-like regime existing far
below the dissipation scale [13–16].

Recently, there has been mounting evidence that the
flow of viscoelastic polymeric solutions in pipe and chan-
nel flows are nonlinearly unstable and undergo a subcrit-
ical instability at sufficiently high flow rates even at low
Re [12, 17–22]. We note that this nonlinear elastic in-
stability is different from the linear instability found in
highly shear-thinning fluids [23–26]; the base flow of the
former is stable while the latter is unstable. Each is im-
portant in its own right. Theoretical investigations using
Oldroyd-B type model and nonlinear perturbation anal-
ysis show that a subcritical bifurcation can arise from
linearly stable base states [17, 19, 20, 27], while non-
modal stability analysis predicts transient growth of per-
turbation [28–30]. Subsequent experiments in small pipes
found unusually large velocity fluctuations that are ac-
tivated at many time scales [21], as well as hysteretic
behavior [18]. More recently, experiments in a long mi-
crochannel using a linear array of cylinders as a way to
perturb the (viscoelastic) flow showed an abrupt transi-
tion to irregular flow and that the velocity fluctuations
are long-lived [12, 22]. The unstable flow exhibits fea-
tures of Newtonian turbulence such as power-law behav-
ior in velocity spectra, intermittency flow statistics, and

irregular structures in the streamwise velocity fluctuation
[22]. Taken together, these results show that polymeric
solutions flowing in straight channels can undergo a sub-
critical transition – a sudden onset of sustained velocity
fluctuations above a perturbation threshold and a crit-
ical flow rate. This scenario is akin to the transition
from laminar to turbulent flow of Newtonian fluids in
pipe flows [31, 32]. The main distinction is that the in-
stability is caused by the nonlinear elastic stresses and
not inertia. Unlike the Newtonian pipe turbulence, how-
ever, little is known about the basic structures organizing
the instability and the law of resistance (i.e. pressure loss
due to friction) as the flow transitions from a stable to
an unstable state.
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FIG. 1. (color online). (a) Schematic of the microchannel,
showing location of pressure sensors and the dye injection
scheme. (b,c) Space time dye patterns for n = 15 and x =
200W in the parallel shear region, (c) viscoelastic fluid at
Wi=20 and (b) Newtonian case at identical flow rate.

In this manuscript, we investigate the flow of polymeric
solutions in a straight micro-channel at low Re using
pressure measurements and particle tracking methods.
Pressure measurements show that the flow resistance in-
creases relative to the stable viscoelastic base flow, fol-
lowing the transition from laminar to a “turbulent-like”
state, cf. Fig. 1(c). This behavior is analogous to Newto-
nian turbulence where the friction factor increases as the
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flow transitions from laminar to turbulent except that
here the governing parameter is the Weissenberg number
(Wi), defined as the product of the fluid relaxation time
λ and the flow shear-rate γ̇. The rise in flow resistance is
related to enhanced elastic stresses and suggests flow pat-
terns not seen in the (viscoelastic) laminar regime. We
find that, far downstream from the initial perturbation,
tracer particles follow wavy trajectories with spanwise
modulation not found in the stable unperturbed flow (cf.
Fig. 5). We believe that the increase in flow resistance
is connected to the appearances of these wavy particle
motions. A friction factor scaling (i.e. flow resistance vs
pressure drop) for viscoelastic channel flows is proposed
to capture this increase in drag.

Experiments are conducted using a straight microchan-
nel with equal width and depth (W = D = 100 µm), fab-
ricated using standard soft-lithography methods. The
device schematic is shown in Fig. 1(a). The channel
length is much larger than its width L/W = 330 and
is divided into two regions. The first region consists of
a linear array of fifteen cylinders (n = 15) that extends
for 30W , with the last cylinder located at x = 0. The
diameter of the cylinder is d = 0.5W and the center to
center separation is ` = 2W . An unperturbed control
case with no cylinders (n = 0) is used as the linearly
stable viscoelastic case. The second region follows the
array of cylinders and consists of a long parallel shear
flow 300W in length. To measure pressure signals, sen-
sors are placed at three locations in the parallel shear
region, x1 = 1W,x2 = 50W,x3 = 290W (see Fig. 1a).
The pressure drop per length p1(t) = (P1−P2)/(x2−x1)
and p2(t) = (P2 − P3)/(x3 − x2) is recorded at 5 ms
resolution for over 2 hours.

The main polymeric solution is prepared by adding
300 ppm of polyacrylamide (PAA, 18×106 MW) to a
viscous Newtonian solvent (90% by mass glycerol aque-
ous solution); the PAA polymer overlap concentration
c∗ is 350 ppm [33] and c/c∗ = 0.86. This weakly shear
thinning polymeric solution has a nearly constant vis-
cosity of around η = 300 mPa·s. The Newtonian sol-
vent has constant viscosity of 220 mPa·s and is also
used for comparison. Throughout our experiment, the
Reynolds number is kept below 0.01, whereRe = ρUH/η,
U is the mean centerline velocity, H is the channel
half-width, and ρ is the fluid density. We characterize
the strength of the elastic stresses compared to viscous
stresses by the Weissenberg number [7], defined here as
Wi(γ̇) = N1(γ̇)/2γ̇η(γ̇), where γ̇ = U/H is the shear
rate and N1 is the first normal stress difference (see SI
[34] for fluid rheology and residence time).

We begin by investigating the flow patterns formed
when a stream of experimental fluid with added fluores-
cent dye is injected at x = 1W after the last post. The
dye spreading and patterns are then visualized far down-
stream in the parallel shear region, 200W downstream
from the last post. Figure 1 shows the spatio-temporal

profile of the dye intensity along the device’s cross sec-
tion (y) for a channel containing 15 posts (n = 15)
for Newtonian (Fig. 1b) and viscoelastic (Fig. 1c) flu-
ids. For the Newtonian case, the profile shows typical
laminar dye layer with minimal dye penetration into the
undyed stream, except for diffusion. (Similar behavior
is observed with viscoelastic fluids for the n = 0 case.)
A different dye pattern is observed when the Newtonian
fluid is replaced by the polymeric solution under the same
conditions. The viscoelastic case, shown in Fig. 1(c) at
Wi ≈ 20, shows irregular flow patterns with spikes of
dye penetration into the undyed fluid stream. The flow
structure of streamwise velocity showed similar develop-
ment downstream (SI [34]). These fluctuations in time
suggest flow modulations normal to the mean flow. In
fact, we will show later that particle trajectories exhibit
wavy coherent motions in the parallel shear region.
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FIG. 2. (color online). Pressure drop per unit length as a
function of flow rate Q and Wi for n=15 and n=0 cases. Solid
line represents estimation using wall shear rates and viscosity
from rheology measurements. Error bars are less than marker
size and not shown here.

As mentioned before, little is known about elastic tur-
bulence in channel flows. Importantly, there is no known
law of resistance for such flows. Here, we observe a new
friction factor scaling for long chain polymeric solutions
with weak shear-thinning in straight channel flows. Fig-
ure 2 shows the mean pressure drop per length signals
p1, p2 for viscoelastic fluids for n = 0 and 15 cases as
a function of flow rate Q and Wi. We note that the
statistical mean of the reported signals measure the ag-
gregate flow resistance encountered to sustain a constant
mass flow rate. As expected, the pressure drop or flow
resistance increases with flow rate and Wi. The pressure
drop for the n = 0 case slightly deviates from the New-
tonian case (i.e. 4P ∼ Q) due to mild shear-thinning
in fluid viscosity. These effects can be accounted for by
estimating the pressure drop using wall shear rate and
corresponding viscosity η(γ̇) measured using a cone-and-
plate rheometer, as shown by the solid line in Fig. 2. No
significant difference is found between p1 and p2 for n = 0
case as expected, since entrance effects are minimized by
using a tapered inlet that generates minor disturbance
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relative to that of the cylinder array. For n = 15, we find
a clear increase in pressure drop relative to the n = 0
case; the two pressure segments p1 and p2 show little to
no difference. This increase in flow resistance cannot be
explained by solely shear-thinning effects and is related
to the development of additional elastic stresses in the
flow as the Wi is increased. It also indicates that more
energy is necessary to keep the same flow rate compared
to a stable viscoelastic channel flow.
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FIG. 3. (color online). (a) Pressure gradient signal p′1(t)
for n=15 case, compared with the unperturbed n=0 case,
Wi=18. (b,c) Root-mean-square (rms) fluctuations versus
Wi for n = 0 and 15, (b) p′1 and (c) p′2. Dashed line is the
average level for Newtonian fluid, experimentally found to be
constant for increasing Q.

The increase in flow resistance is closely associated
with the onset of pressure fluctuations (Fig. 3). Figure
3(a) shows sample time records of pressure fluctuations
p′1(t) for viscoelastic fluids at Wi = 18 in devices with
n = 0 (black) and 15 (blue). We observe a clear in-
crease in the pressure fluctuations far downstream the
cylinders once they are introduced in the flow. Figures
3(a,b) show root-mean-square (rms) values of the pres-
sure fluctuations of the p′1 and p′2 segments, respectively,
as a function of Wi for the n=15 and n=0 cases. For the
n=0 case, pressure fluctuations remain relatively small
and nearly independent of Wi; the small increase in pres-
sure fluctuation at the higher values of Wi may be due to
entrance effects. We find that for both segments, p′1 and
p′2, the rms values show significant departure from the
stable n = 0 case and a marked increased with increas-
ing Wi. The values of the rms(p′1) and rms(p′2) start
to depart from the n = 0 trend at Wi ≈ 5 and grows
weakly until Wi ≈ 9. This is followed by a much steeper
growth for Wi & 9. This trend in pressure fluctuation
measurements agrees relatively well with measurements
of velocity fluctuations, for n = 15 case, which estab-
lished that the linear instability associated with the flow

around the upstream cylinders occurs at Wi ≈ 4 and the
onset of subcritical instability occurs at Wi ≈ 9 [12, 22].

Since pressure data is now available, one can inves-
tigate the law of flow resistance for viscoelastic chan-
nel flows as a function of Wi. This is analogous to
measuring the Darcy friction factor for Newtonian pipe
flows as a function of Re [35], traditionally defined as
(∆P/∆L)/(ρU2/2W ). For small geometry variations
(e.g. smooth pipes), the friction factor f is solely a func-
tion of Re. In what follows, we propose that there is an
analogous law of resistance for viscoelastic channel flows
controlled byWi. Since fluid inertia in our experiments is
negligible (Re . 10−3), we propose to scale the pressure
drop by the viscous stresses across the channel and de-
fine a viscous friction factor fη as (∆P/∆L)/(cηwγ̇w/W ),
where γ̇w is the wall shear-rate, ηw is the corresponding
viscosity and geometry factor c ≈ 4 for square duct (SI
[34]).
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FIG. 4. (color online). Viscous friction factor fη as a function
of Wi for n=0 and 15 with four cases and types of polymeric
fluids. Case I: 300ppm PAA 90% glycerol, 0-50W , II: 50-
290W , III: 250ppm PAA 90% glycerol, 0-290W , IV: 100ppm
PAA 93% glycerol, 0-290W .

Figure 4 shows the friction factor fη versus Wi for the
main polymeric fluid, as well as two other fluids with dif-
ferent polymer concentrations and solvent viscosity (see
[34]) in channels with n = 0 and 15. For n = 0, the fric-
tion factor is independent of Wi, indicating the flow resis-
tance is purely governed by viscous drag well accounted
for by the normalization. For n = 15, however, we ob-
serve an increase in flow resistance with fη∼Wi1/3 up
to Wi ≈ 9. Surprisingly, we find a second plateau-like
regime for Wi & 9 in which a sudden decrease in fη is
observed followed by a weak dependence on Wi, valid
before polymer finite extensibility occurs at Wi & 16.
This relative decrease in drag seems to suggest the emer-
gence of a new flow state. The data in Fig. 4 suggest that
the initial fη∼Wi1/3 regime is likely a transitional state
leading to a fully turbulent-like state. Similar to Newto-
nian pipe flows, a sharp increase in drag occurs during
the transition regime before the flow becomes fully tur-
bulent. We note the Wi1/3 scaling observed here is lower
than the Wi1/2 scaling of injected power in the elastic
turbulence of a swirling parallel plate system where the
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base flow is curved and linearly unstable [36].
Next, we investigate the structure of the viscoelastic

flow for n=15 and Wi=18; this is the regime in which we
expect highly irregular flow but quantifying the presence
of flow structures has been difficult due to the weak span-
wise velocity component relative to the mean shear [22].
To interrogate the flow with enough spatial and temporal
resolution, we use a novel three-dimensional holographic
particle tracking method [37, 38]. The flow is seeded
with tracers (1 µm diam at .001%) imaged under micro-
scope and high speed camera (5000 fps). Using a coher-
ent light source, particle positions are reconstructed from
the light scattering field on the imaging plane (see [34]).
The uncertainty in particle centroid is 30 nm for in-plane
x, y components. The measurement window is located
at x=200W in the parallel shear region and extends for
2.5W streamwise and 0.9W spanwise.

FIG. 5. (color online). (a) Particle trajectories in the stream-
wise (x) and spanwise (y) direction; blue lines represent the
n=15 viscoelastic case at Wi=18 and the gray line is New-
tonian at identical conditions. (b) Collection of trajectories
colored by speed. Distributions of (c) cumulative transverse
to streamwise displacements and (d) trajectory curvatures,
where dash line represents population mean.

Figure 5(a) shows sample particle trajectories for the
Newtonian (grey) and viscoelastic (blue) fluids for the
n = 15 and Wi = 18. While the particle trajectory in
the Newtonian case follows the mean flow with little lat-
eral motion, particle trajectories in the viscoelastic fluid
case display a relatively pronounced waviness and lateral
movement. This is not isolated to a few particles and
Fig. 5(b) shows the full extent of the spanwise spread for
2000 such Lagrangian trajectories sampled uniformly in
the channel. Such wavy structures underlie the irregular
dye transport patterns seen in Fig. 1(c). We quantify
these deviations from the base-flow by calculating the
normalized distribution (pdf∗) of the ratio between trans-
verse to streamwise cumulative displacements (Fig. 5c)
defined as δy/δx =

∑
|dyi|/

∑
|dxi|, where dyi and dxi

are particle displacements between frames. The Newto-
nian data (black) show minimal transverse component
and set the measurement noise level. Particles in the vis-
coelastic fluid, however, exhibit small but finite values
of transverse velocity and a broader distribution of in-
dividual particle end-to-end displacement. These results
indicate the presence of spanwise structures in viscoelas-
tic fluids in parallel shear flows. While these deviations
from the base-flow are small in absolute terms (2% of the
streamwise component), even small deviations in the ve-
locity fields in viscoelastic fluids can represent significant
increase in elastic stresses due to the nonlinear relation-
ship between stress and velocity [39, 40].

Can these curved particle trajectories drive or main-
tain flow instabilities far downstream (200W )? Figure
5(d) shows the distribution of particle pathline curva-
tures at 200W for Wi = 18, n = 15. The trajectories
have a mean curvature of R−1 ≈ .023 µm−1, which is an
order of magnitude larger than the Newtonian counter-
part. Using N1 data (see [34]), we compute the Pakdel-
McKinley condition [(λU/R)Wi]1/2 [41]. We find a value
of approximately 7, which is sufficiently large to trigger
flow instabilities. Similarly, we find that hoop stresses
N1/R= 8 Pa/µm is of the same order (or higher) than
the viscous drag ∆P/∆L

∣∣
n=0

= 2 Pa/µm. Hence addi-
tional pressure head is lost to overcome elastic stresses
induced by the chaotic flow. These results suggest that
weak but non-trivial streamline curvatures generate suf-
ficient elastic stress fluctuations in the secondary flow
direction to sustain flow instabilities far downstream.

In summary, we investigated the flow of viscoelastic flu-
ids in a long, straight microchannel at low Re. This flow
becomes unstable via a nonlinear subcritical instability
at a critical Wi for finite amplitude perturbations [12].
Pressure measurements are used to establish the friction
factor scaling for this flow (Fig. 4). We find two regimes:
(i) a transitional regime 5 . Wi . 9 in which the (vis-
cous) friction factor fη ∼ Wi1/3, and (ii) a turbulent-
like regime Wi . 9 in which a sudden reduction of fη
is observed followed by a weaker dependence on flow
rate. The increase in drag (30% cf. laminar flow) is
accompanied by an increase in pressure fluctuation and
development of elastic hoop stresses due to finite span-
wise curvature perturbations, which we quantify using
high resolution holographic particle tracking. Unlike the
Reynolds stress in classical turbulence, the extra flow re-
sistance here stems from elastic hoop stresses induced by
curvature perturbations. Furthermore, the various levels
of increased resistance for different polymeric fluid may
be controlled by the distribution of such curvatures. At
intermediate Re, recent studies on elasto-inertial turbu-
lence (EIT) proposed a direct path to the classic drag
reduction asymptote, bypassing Newtonian turbulence
[42, 43]. Whether a common instability underlies these
two states, elastic turbulence and EIT, remains an open
question. Finally, our results provide strong evidence for
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the “instability upon an instability” mechanism proposed
for the finite amplitude transition of viscoelastic fluids
in parallel flows [19] and develop new insights into the
flow of polymeric solutions in channels and pipes. Even
small perturbations in the velocity field can lead to large
changes in elastic stress and flow drag.
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