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Standard exceptional points (EPs) are non-Hermitian degeneracies that occur in open systems.
At an EP, the Taylor series expansion becomes singular and fails to converge — a feature that was
exploited for several applications. Here, we theoretically introduce and experimentally demonstrate a
new class of parity-time (PT) symmetric systems (implemented using radio frequency (RF) circuits)
that combine EPs with another type of mathematical singularity associated with the poles of complex
functions. These nearly divergent exceptional points (DEPs) can exhibit an unprecedentedly large
eigenvalue bifurcation beyond those obtained by standard EPs. Our results pave the way for building
a new generation of telemetering and sensing devices with superior performance.

Spectral points that poss special features have been a
subject of intense studies recently. A well-known exam-
ple of such points that are pertinent to periodic systems
is the Van Hove singularity, at which the optical den-
sity of state does not vary smoothly as a function of fre-
quency (the slope if is discontinuous). First investigated
in the context of lattice vibrations [1], and later in pho-
tonic crystals [2], identifying these points has been proven
useful in spectroscopy applications [3]. Another impor-
tant class of spectral points are those associated with the
eigenvalue degeneracy of Hermitian Hamiltonians (widely
known as diabolic points (DP)), which play an important
role in the studies of molecular vibrations within the so
called Born-Oppenheimer approximation. In the theory
of band structures, a DP associated with dispersionless
band is also known as Dirac points [4, 5] (since they also
arise from the relativistic Dirac equation). While Dirac
points are not associated with any topological protection,
a close cousin known as Weyl points further offers topo-
logical features [6–8]. Despite the fact that these mathe-
matical constructions were known since several decades,
it was not until recently that physicists were able to ex-
perimentally probe them in the laboratory, especially in
optical platforms where many-body interactions can be
controlled at will.

The aforementioned work focused mainly on Hermitian
systems. Relaxing this condition to deal with effective
non-Hermitian systems can result in even more exotic
spectral features. More specifically, the non-Hermiticity
of an effective Hamiltonian implies that its eigenstates
do not need to be orthogonal. As a result, special de-
generacies where both the eigenvalues and eigenfunctions
become the same can occur at the so called exceptional
points (EP) [9–14]. The interest in the peculiar behav-
ior associated with EPs has exploded in the past years
following the discovery of parity-time (PT) symmetric
Hamiltonians that exhibit real spectra [15]; and the in-
troduction of this concept to classical wave dynamics for
the first time [16–19], which opened the door for a host

of experimental studies in optics [20–22], electronics [23–
31] as well as other platforms. Currently, several research
groups are exploring the utility of non-Hermitian optics
near EP to build miniaturized optical isolators [32, 33],
better laser [20–22, 34–41] and more responsive sensors
[42–47], and nonlinear optics [48, 49] to just mention few
examples. For recent reviews, see [50, 51]. Additionally,
enhanced wireless sensing with EPs is also attracting at-
tention recently [25–31].

Despite this progress, all these activities focused only
on one type of EPs having the form n

√
.. These repre-

sent branch point singularities at which the tailor series
expansion of the associated function fails to exist. How-
ever, apart from the discontinuity across the branch cut
(with its intriguing implications for the encircling of EPs
[52–54]), the eigenvalues themselves (or equivalently the
associated multivalued function) remain bounded.

In this Letter, we consider a rather unusual scenario
where an EP coincides with (or occurs in the vicinity
of) a divergent singularity. We show that even though
in practice physical systems cannot diverge, they can be
locked near a divergent EP (DEP). Particularly, we show
theoretically and demonstrate experimentally that the
effect of a DEP on a nearby non-divergent EP can leave
a clear fingerprint featured by giant enhancement of the
eigenvalue splitting across the latter.

To this end, and before we describe our experimental
results, let us consider a function of the form f(x) =

1√
1−x2

. The function f is real valued for x < 1 and

imaginary for x > 1 with an EP located at x = 1 which
is also the same point where the function diverges, i.e.
f(1) =∞. As a result, in contrast to standard EPs where
the splitting of the real part scales smoothly (for example
as a square root function for second-order EPs), here it
diverges abruptly. If one could implement this system ex-
perimentally, it would be the ultimate sensor with infinite
responsivity to any infinitesimal perturbation. Unfortu-
nately, in practice this is not possible. Many realistic
physical effect (such as existence of a source at very high
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FIG. 1. (a) A schematic of the three-elements PT-symmetric electronic circuit proposed for implementing nearly divergent
EPs. It consists of a −RLC gain tank (top red), an RLC loss tank (bottom blue) and a neutral element LC (center gray). The
normalized coupling between the coils is κ and the non-Hermitian parameter is γ (see text for definition). (b) The phase diagram
of this circuit in the κ–γ plane. As discussed in the text, four different phases are identified: PT symmetry, underdamped
broken PT symmetry (UBPT), overdamped broken PT symmetry (OBPT) and a mixed phase that contains eigenstates in
the PT phase and others in the broken phase. The black solid and dashed lines, denoted by EP±, are exceptional lines that
separate different phases. The solid red line consists of divergent EPs and separates the mixed phase from the rest of the
domains. The white dashed line indicates the parameters used for the experiment as discussed later. (c) Bifurcation of real
parts of the eigenvalues associated with (b). Note that as κ → κD = 1/

√
2, the splitting between the eigenfrequency becomes

larger (theoretically diverges when κ = κD).

frequencies, stabilities and nonlinearities) will come into
play to prevent such a response. It may thus seem that
this concept is of little practical use. However, before we
give up, let us consider a related function that has an ad-

ditional degree of freedom: F (x, y) =

√
α2

1−y2√
α2

2−x2
. Assuming

α1 6= α2, the function F (x, y) will have a standard ex-
ceptional line at y = α1 and a divergent singularity at
x = α2. If one can design a system that operates close
enough to x = α2, the divergent point will be avoided,
while at the same time its impact will be imprinted on the
eigenvalue splitting across the exceptional line y = α1:
the closer we get to x = α2, the larger the eigenvalue
bifurcation. In this case, we call the EP y = α1 nearly
divergent or NDEP (in the above example it is actually
a line rather than a point, but this is irrelevant to the
subsequent discussion).

Having introduced the notion of DEPs and NDEPs
theoretically, it is natural to inquire about the possibility
of building a physical system that exhibits these spectral
features. This is indeed a challenging task given that
optical systems (the most widely used platform for in-
vestigating non-Hermitian physics) do not naturally ex-
hibit these spectral divergences, due to lack of lumped
elements (in which the current does not vary, i.e., phase
change or transition time is negligible). In this regard, ra-
dio frequency (RF) quasi-static resonators made of RLC
circuits (consisting of a resistor (R), an inductor (L), and
a capacitor (C)) provide an advantage: in coupled PT
electronic systems (composed of two coupled -RLC/RLC

resonators), the solution of the second-order differential
equations arising from Kirchhoff current and voltage laws
exhibit such a singularity [23, 26]. However it occurs only
for a perfect mutual coupling between the inductors, a
condition that is impossible to achieve in practice. To
complicate things further, it is not even easy to design
a system that operates near this point. In practice, a
nearly perfect inductive coupling requires a high perme-
ability magnetic core and shielding plates, and any ma-
terial or Eddy-current loss could decrease the coupling
coefficient significantly [55].

In order to proceed, let us consider a coupled elec-
tronic circuit that consists of three stages representing
gain/neutral/loss resonators, as shown in Fig. 1(a). We
will denote this circuit with C3 (as opposed to the stan-
dard two-elements PT circuit which we will denote C2).
One may think that adding a neutral element may lead
to a standard higher order EPs similar to the counter-
part optical systems [56–58]. This however is not the
case. By applying Kirchhoff laws to the proposed circuit
topology shown in Fig. 1(a). we can write an effective
PT-symmetric Hamiltonian for the system, Heff, with the
following eigenfrequencies [see Supplementary Material
(SM) [59] for more details]:

ωn = ±1,±

√
2γ2 − 1±

√
1− 4γ2 + 8γ4κ2

2γ2(1− 2κ2)
, (1)

where γ = R−1
√
L/C is the non-Hermitian parameter

and κ = M/L < 1 is the normalized mutual coupling
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(here M and L are mutual and self inductances of the
coils). By inspecting Eq. (1), it is clear that κ = κD ≡
1/
√

2 are the DEPs. For κ < κD, we can identify three
different phases, separated by two exceptional lines de-

scribed by the equations γEP± =
√

1±
√

1− 2κ2/(2κ),
as shown as black solid/dashed lines in Fig. 1(b). In the
PT phase given by γ ∈ [γEP+,+∞], all the eigenstates
respect PT symmetry with real eigenvalues. In the range
γ ∈ [γEP−, γEP+], the system exhibits an underdamped
broken PT (UBPT) phase where the eigenvalues are com-
plex conjugate. In the overdamped broken PT (OBPT)
phase with γ ∈ [0, γEP−], the eigenvalues are pure imag-
inary. Mathematically, the last two regimes are sepa-
rated by an exceptional line given that both represent
a broken PT phase. This feature arises due to charge
conjugation symmetry of the Hamiltonian: H = −H∗
(see SM for details). We note however that, physically,
the solutions related by this symmetry correspond to the
same state. For κ > κD, the eigenspectrum exhibits a
mix between PT states and BPT states. The boundary
separating this mixed phase from the rest of the phase
diagram is marked by a divergent exceptional line: a line
made of DEPs, i.e. EPs that also coincide with pole sin-
gularities. Note that the three exceptional lines (black
solid/dashed and red lines) meet at one point given by
(γ, κ) = (1/

√
2, 1/
√

2). It is important to emphasize that
before the system approaches this divergent regime, non-
linear effects dominated by the nonlinearity of active cir-
cuit element (which is used to implement the negative
resistance as discussed in SM) will come into play to reg-
ulate the circuit behavior. Thus, the important question
is: can one at least engineer the system to operate close
enough to these DEPs such that they have significant
impact on the spectral features? Figure 1(c) plots the
linear spectrum associated with Eq. (1). It shows that
close to the DEPs, the eigenvalues bifurcation (which cor-
responds to frequency splitting between to resonant fre-
quencies, not to their amplitudes) becomes dramatic —
a feature that can be utilized to build next generation
ultra-responsive PT sensors beyond the current state of
the art. In theory, similar behavior can be also traced
in the conventional two-elements PT symmetric systems
studied in [23]. In practice, the divergent exceptional line
in the latter occurs for κ = 1 — a condition that is impos-
sible to achieve in experiment as it implies that perfect
mutual coupling between the inductors, i.e. equal val-
ues for the mutual and self inductances. Thus the main
merit of the three-elements circuit presented here is to
bring these singularities to an experimentally accessible
domain. Importantly, we note that the above results do
not have analogue in optical systems. In fact, an optical
PT trimer that consists of neutral element sandwiched
between gain/loss sites will demonstrate a very different
behavior by possessing a third order exceptional point
[44, 45].

In order to demonstrate the advantage of the proposed

circuit topology (Fig. 1(a)) in providing indirect access
to the DEPs with potential telemetric sensing applica-
tions, we have built a prototype using onboard circuit
technology (see SM for details). The circuit consists of
a tunable RLC tank that mimics a wireless capacitive
sensor [26]. This pseudo-sensor consists of a variable ca-
pacitor, connected in series to a planar spiral inductor
and a resistor (which accounts for the effective resistance
of the sensor), such that its equivalent circuit is identi-
cal to that of a realistic wireless sensor. The informa-
tion provided by the sensor is then read by an −RLC
tank connected to the vector network analyzer (VNA)
for measuring the reflection spectrum. Unlike standard
PT-symmetric telemetric systems where the sensor and
reader tanks are directly coupled [26], the current system
is constructed by inserting a neutral LC tank between
the −RLC and RLC oscillators as shown in Fig. 1(a).
In both the −RLC and RLC resonators, the inductance
of microstrip coils is L = 330 nH and the absolute value
of resistance | − R| = R = 50 Ω. In order to emulate
behaviors of a wireless capacitive sensor, the capacitance
C of tank circuits is tuned from 30 pF to 220 pF (SMA
CER ±0.05 pF). This in turn varies the non-Hermiticity
parameter of the system, γ ∝ 1/

√
C which is the rel-

evant parameter for real-life wireless capacitive sensing
applications [26]. A schematic diagram and a picture of
the implemented circuit are shown in Fig. 2(a) and (b)
respectively. For comparison, we have also fabricated a
standard (two-elements) PT circuit. In both structures,
the normalized coupling coefficient was engineered to be
κ = 0.3. While this value is relatively weak, it still fa-
vors the three-elements circuit in terms of operation near
the DEP (corresponding to κ ≈ 0.7) as compared to the
standard two-elements circuit having DEP at κ = 1.

Figure 2(c) and (d) plots the theoretical (solid lines)
and experimental (dots) values of complex eigenfrequen-
cies as a function of the non-Hermitian parameter γ for
the proposed three-elements circuit. The experimental
results here span the range indicated by the white dashed
line in Fig. 1(b), i.e. they trace the transition from the
UBPT phase to the PT phase across the EP marked by
the green point in the figure. For comparison, we present
also the results for the standard two-elements PT cir-
cuit on the same figure. Firstly, we find a good agree-
ment between theoretical predictions and experimental
data. Secondly, it is clear that the three-elements system
demonstrates giant frequency splitting (red data points)
compared with the standard one (blue dots). Finally,
we also note that the location of the EP in the proposed
three-elements system is down shifted compared with the
standard circuit, which is in agreement with theory.

Encouraged by these results, we have also explored the
related system shown in Fig. 3(a). Here, the neutral os-
cillator has the same resonant frequency as before but
with its inductor and capacitor scaled according to 2L
and a C/2. Furthermore, we consider the coupling topol-
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FIG. 2. Circuit schematic (a) and picture of the on-board cir-
cuit implementation (b) of the proposed three-elements RF
network. (c) and (d) plot the real and imaginary eigenfre-
quencies as extracted from the RF reflection measurements
(see SM for details). From (c), it is clear that the frequency
splitting in the proposed system (red lines and dots) is larger
than that of the corresponding standard PT system having a
coupling κ = 0.3 (blue lines and dots), as well as that asso-
ciated with conventional telemetry system based on non-PT
inductive coupling geometry (see Fig. S.2 for more details)
which is shown in green lines/dots [26].

ogy shown in Fig. 3(a). By following the similar analysis
to that shown in SM, one can show that the new fre-
quency splitting will be enhanced because κ in Eq. (1) is
replaced by

√
2κ. In this case, the divergent exceptional

line is located at κD = 0.5. In other words, this modified
circuit requires reduced normalized coupling to bring the
system closer to the DEP, which in turn lead to enhanced
eigenvalue bifurcation. Figure 3(b) depicts the fabricated
circuit with the modified neutral circuit. The theoreti-
cal and experimental data for the spectral bifurcation
are plotted in Fig. 3(c) and (d). Again for comparison,
we also plot the data for the standard two-elements PT
circuit. As evidenced by the plots, we observe a gigan-
tic enhancement of the frequency bifurcations, almost 5
times more than in the previous case.

To further facilitate the comparison between the pro-
posed circuits with respect to each others as well as
to the standard PT circuit, we also plot the frequency
splitting extracted from Figs. 2 and 3 as a function of
∆γ = γ − γEP. As can be observed from Fig. 4 (a) and
(b), the scaled PT circuit, being closer to the DEP, offers
a clear advantage as measured by larger splitting.

In conclusion, we have introduced the notion of diver-
gent exceptional points and showed how they can be in-
directly accessed by using three-elements PT-symmetric
electronic circuits made of gain-neutral-loss resonators.

FIG. 3. Schematic of the scaled three-element circuit (a) and
picture of its on-board circuit implementation (b). (c) and (d)
plot the real and imaginary eigenfrequencies, varying a func-
tion of non-Hermiticity parameter γ, for the dual-links three-
stages PT-symmetric telemetric system in (a) with κ = 0.495
(red circles), the standard PT-symmetric telemetric system
with κ = 0.7 (blue squares), and the conventional one using a
micro-coil reader with κ = 0.7 (green diamonds). A five-fold
enhancement in the bifurcation compared to standard PT cir-
cuit is observed. For comparison, we also present the results
for conventional telemetry system (green line/dots) [26]. For
completeness, we also plot the constant eigenfrequency (hor-
izontal red line) associated with the solution in Eq. (1).

FIG. 4. Plots of the frequency splitting as a function of ∆γ =
γ − γEP for both experimental setups shown in Fig. 2 and
3. Note that the scaled PT circuit offers a clear advantage as
measured by larger splitting.

We have tested our predictions experimentally and
demonstrated that, indeed, the eigenfrequency bifurca-
tion close to divergent exceptional points can be boosted
as a result of the interplay between the square root split-
ting of second order EPs and the giant multiplication
factor associated with DEP. We envision that such new
non-Hermitian electronic systems, when applied to wire-
less probing and telemetering, will enable a superior sens-
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ing capability. This work can be also extended to other
microwave, millimeter-wave and terahertz wireless sys-
tems.
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