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We characterize the early stages of the approach to equilibrium in isolated quantum systems through the
evolution of the entanglement spectrum. We find that the entanglement spectrum of a subsystem evolves with
three distinct timescales. First, on an o(1) timescale, independent of system or subsystem size and the details
of the dynamics, the entanglement spectrum develops nearest-neighbor level repulsion. The second timescale
sets in when the light-cone has traversed the subsystem. Between these two times, the density of states of the
reduced density matrix takes a universal, scale-free 1/f form; thus, random-matrix theory captures the local
statistics of the entanglement spectrum but not its global structure. The third time scale is that on which the
entanglement saturates; this occurs well after the light-cone traverses the subsystem. Between the second and
third times, the entanglement spectrum compresses to its thermal Marchenko-Pastur form. These features hold
for chaotic Hamiltonian and Floquet dynamics as well as a range of quantum circuit models.

Understanding how an isolated quantum system reaches
thermal equilibrium is a central problem in quantum statistical
physics. Substantial progress has been made on the late-time
aspects of thermalization, based on the eigenstate thermaliza-
tion hypothesis [1–5], which implies that small enough sub-
systems are well described by thermal density matrices if one
waits long enough for information to have traversed the en-
tire system. Much numerical [3, 5, 6] and experimental [7]
evidence now exists for eigenstate thermalization. However,
the mechanism by which a local density matrix goes from
being disentangled to being fully thermal is still poorly un-
derstood. Some coarse grained features of the thermalization
process have recently been characterized numerically through
the study of random unitary circuits (RUCs) [8–16]. In spe-
cial limits of RUCs and fine-tuned models such as the self-
dual kicked Ising model [17], exact solutions are available for
entanglement growth and the scrambling of local operators.
However, these solvable cases are non-generic and miss im-
portant aspects of the generic thermalization process.

The present work addresses the dynamics of entanglement
and thermalization at early times in generic systems (i.e. non-
integrable models with a low-dimensional on-site Hilbert
space): here, entanglement spectra [i.e., eigenvalues of the
reduced density matrix] [18–23] evolve in a highly nontrivial
way: behavior that is absent in the aforementioned solvable
limits. The picture that emerges is independent of how the
dynamics is generated, holding for Hamiltonian, Floquet, and
temporally random dynamics; for systems with and without
conservation laws; and for chaotic as well as many-body lo-
calized systems. Here, we focus on Hamiltonian dynamics
and RUCs; for other cases see [24].

We show that the process of thermalization takes place in
three stages; our main new results are that the entanglement
spectra behave universally even at relatively early times as
demonstrated in Fig. 1, although its early- and late-time prop-
erties belong to different universality classes. To explain these
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FIG. 1. Spectral properties of the reduced density matrix under
generic time evolution. (a) Spectral density of the reduced density
matrix for random unitary (R) and chaotic Hamiltonian (H) dynamics
at early times; this follows a 1/f distribution (dashed line). (b) Ad-
jacent gap ratio of the entanglement spectrum, as a function of time,
comparing R and H dynamics. Colors denote the model (red for R
and blue for H); for each color, empty symbols are for system size
L = 12 and subsystem size lA = 6, whereas filled symbols are
for L = 16, lA = 8. The random-matrix prediction [〈r〉 ≈ 0.599]
is marked with a dashed black line. (c, d) Evolution of entangle-
ment bandwidth w and von Neumann entanglement entropy S1, for
R and H dynamics with L = 16, lA = 8. For both R and H dynam-
ics the entanglement bandwidth grows until t = lA/2, then shrinks,
whereas the entanglement entropy keeps growing.

regimes, we introduce multiple characteristic timescales in the
entanglement evolution: (i) the timescale on which the en-
tanglement spectrum develops nearest-neighbor level repul-
sion; (ii) the timescale on which the rank of the density matrix
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FIG. 2. Pure random unitary circuits: (a) The disconnected ESFF
D(θ) and (b) the connected ESFF Dc(θ) for various different times.
The legend in (a) is shared across these figures.

[i.e., the Rényi entropy S0 in Eq. (3)] saturates; and (iii) the
timescale on which the RDM saturates to its late-time behav-
ior. One of our main results is that timescale (i) is independent
of system and subsystem size and insensitive to the nature of
the dynamics. A second main result is that the spectrum of the
reduced density matrix between timescales (i) and (ii) exhibits
a universal, scale-invariant 1/f density of states. This distri-
bution spreads over increasingly many decades as time passes,
until we hit timescale (ii). Once again, this behavior is present
in all the models we have considered, but is absent in the ex-
actly solvable limits. Finally, between timescales (ii) and (iii)
the range of the 1/f distribution shrinks, and narrows toward
the late-time Marchenko-Pastur form [19]; during this entire
process the entanglement entropy is still growing. For quan-
tum circuits, which have a strict light cone, there is a sharp
transition between these regimes, set by the subsystem size.
For Hamiltonian dynamics this is rounded into a crossover
(due to the exponential tails in the Lieb-Robinson bound [25])
but the two temporal regimes are still clearly distinguished in
practice [Fig. 1]. Our main findings are absent in exactly solv-
able limits, where the entanglement density of states is a delta
function at all times, and consequently the nearest-neighbor
level spacing is not defined.

We capture level statistics beyond nearest-neighbor using
an appropriate entanglement spectral form factor. At short
times the spectral form factor of the entanglement spectrum
has a “ramp” feature characteristic of level repulsion, but does
not quantitatively behave as random-matrix theory would pre-
dict. Further, the spectral form factor drifts with time until
very late times when the entanglement has saturated; only then
does it take on its universal shape dictated by random matrix
theory. Thus our results clarify the sense in which such sys-
tems are “locally thermal”: although the coarse structure of
the reduced density matrix is far from that of a thermal state,
its “short-distance” level statistics look thermal.

Models.—The main results outlined above were checked
for a variety of models, both under discrete-time evolution
(i.e., quantum circuits) and continuous-time Hamiltonian evo-
lution. The quantum circuits considered here all involve time-
evolution operators of the form U(t) = U(t, t−1)U(t−1, t−

2) · · ·U(1, 0), where

U(t′, t′−1)=
⊗
i∈2Z

Ui,i+1(t
′, t′−1)

⊗
i∈2Z+1

Ui,i+1(t
′, t′−1), (1)

with i being the site index and Ui,i+1 being unitary matri-
ces. When written as a matrix in the many-body Hilbert space
the gates are very sparse, and therefore we simulate them ex-
actly using sparse matrix-vector multiplication. In the main
text we present results for circuits in which these unitaries
are randomly chosen at each point in space and time; we
draw them either completely randomly (with Haar measure)
or from an ensemble of random matrices with a single conser-
vation law [12]. We have also simulated the Floquet versions
of these circuits, but find no noticeable differences in entan-
glement spectra between the temporally random and Floquet
cases. One other case—a Floquet model that is many-body lo-
calized [26] rather than chaotic—is shown in [24]. Although
the evolution of S1 is very different in this case, the entangle-
ment spectrum still shows level repulsion and a 1/f distribu-
tion in its bulk: chaos matters only for the largest few Schmidt
coefficients.

To study Hamiltonian evolution we consider the Ising
model with both transverse and longitudinal fields:

H =
∑
i

Jσzi σ
z
i+1 + hxσ

x
i + hzσ

z
i (2)

where σαi are spin-1/2 Pauli operators. For our simulations
we choose the parameters (hx/J, hz/J) = (0.9045, 0.809),
corresponding to a nonintegrable regime in which thermal-
ization is known to be fast [27, 28]. We use a Krylov-space
method to efficiently time-evolve the state [29].

Measured quantities.—The RDM of any subsystem has
non-negative real eigenvalues {λn}. Since broad distribu-
tions are present, it is helpful to work with the entangle-
ment spectrum, which has eigenvalues {En} = {− log λn}.
The entanglement density of states is given by %S(E) =
D−1

∑
n δ(E − En) where D is Hilbert space dimension of

subsystem A, and the entanglement bandwidth is the width
of this probability distribution [30]. The Renyi entropies are
moments of the {λn}:

Sα ≡
1

1− α
log
(∑

n
λαn

)
. (3)

We quantify level statistics via the adjacent gap ratio r [31],

rm ≡
min(δm, δm+1)

max(δm, δm+1)
, (4)

where δm = Em − Em−1 and the Em are arranged in as-
cending order. The average adjacent gap ratio takes the value
〈r〉 ≈ 0.599 for the Gaussian unitary ensemble (GUE); its
probability distribution also approaches a universal form [31].

The adjacent gap ratio is only sensitive to the level repul-
sion of neighboring eigenvalues. To quantify “longer-range”
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level repulsion we study the spectral form factor of the en-
tanglement spectrum, which is the Fourier transform of the
two-point function of the spectral density in the entanglement
spectrum. We term this the “entanglement spectral form fac-
tor” (ESFF). The ESFF characterizes the global level statistics
of the entanglement spectrum, and is expressed as:

D(θ) ≡
〈∑

n,m
eiθ(En−Em)

〉
. (5)

Here θ denotes an auxiliary “time” variable conjugate to
the entanglement “energy.” For a GUE random matrix, the
spectral form factor has a linear growth in θ, called the
ramp, followed by a sudden saturation, reaching its plateau
value [32]. A precise ramp-plateau structure can be obtained
by subtracting out the disconnected parts |〈

∑
n exp(iθEn)〉|2,

which defines the connected ESFF Dc(θ) = D(θ) −
|〈
∑
n exp(iθEn)〉|2. These form factors have the advantage

of capturing gap correlations beyond nearest neighbor, but the
disadvantage of being sensitive to the overall entanglement
density of states (DOS) [Fig. 1 (c)]. Note that the ESFF is
not the unique spectral form factor one can construct for the
reduced density matrix; we could instead have constructed a
spectral form factor from the eigenvalues of the reduced den-
sity matrix [24]. However, the ESFF has the crucial advantage
that its asymptotic large-θ behavior is set by the large Schmidt
coefficients, and is therefore sensitive to the late stages of the
thermalization process.

Under Hamiltonian dynamics, the eigenstate thermalization
hypothesis implies that at late times the reduced density ma-
trix takes the form ρA = exp(−HA/T ), where T is the tem-
perature set by the global energy density [5]. Thus, the ESFF
matches the spectral form factor of the Hamiltonian (projected
into the subsystem), up to rescaling. On the other hand, under
random unitary dynamics, even when there is a conservation
law, the conserved quantity is not the generator of the dynam-
ics. Hence, the ESFF acts as a measure of how random the
state is, and its late-time structure is what one would predict
from a random pure state [33]. We find that both spectral form
factors settle down to a time-independent function that is con-
sistent with the shape predicted from random matrix theory,
once the entanglement entropy has completely saturated (see
Fig. 2 and [24]).

Purely random circuits.—We first discuss our results for
the purely random case. In this case each gate is picked Haar-
randomly at each space and time point. The distribution of
RDM eigenvalues becomes broad at short times (t < lA/2,
where lA is the size of the subsystem) following a univer-
sal scale free 1/f distribution [Fig. 1 (a)]. The entanglement
level statistics rapidly approaches its random-matrix value on
an o(1) timescale [Fig. 1 (b)], that is independent of the sys-
tem and subsystem size[24]. The entanglement bandwidth ini-
tially grows linearly in time, out to a time t = lA/2 when the
light cone hits the edge of the subsystem and then decays al-
gebraically to a small steady state value [Fig. 1 (c)]. During
this short time dynamical process the entanglement entropy
continues to grow until it saturates at time scale set by the

sharp N variable N

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

r

P
(r)

(a) (b)
t=4
t=8
t=12
t=20

t=25
t=30

1 101 102 103

102

103

θ

D
(θ
)

FIG. 3. Random unitary circuits with a single conservation law.
(a) Evolution of the ESFF in the conserving case for an initial state
with definite particle number, at L = 16, lA = 6, averaged over
600 samples. Note the appearance of ramp-plateau structure despite
the Poisson level statistics in (b). (b) Level statistics parameter r for
the conserving circuit with fixed- and variable-number initial states,
which respectively approach Poisson and random-matrix behavior
(dashed lines show the exact distributions [34] of the r ratio for Pois-
son and GUE distributions respectively).

system size [Fig. 1 (d)]. In Fig. 2 we show the behavior of the
ESFF in this model, for L = 20, lA = 8. The ESFF develops
a ramp-plateau structure at early times, corresponding to the
short timescale on which level repulsion sets in among the en-
tanglement “energy levels”. However, the overall shape of the
ESFF drifts over time, until the entanglement bandwidth and
entanglement entropy have saturated.

(B) Random circuits with a conservation law.—To test
whether these results are restricted to fully random circuits
we turn to the case with a conserved quantity, which we take
to be the z-component of the spin. For spin-1/2 degrees of
freedom the most general conserving two-spin gate acts as a
random phase on the states | ↑↑〉 and | ↓↓〉, and a random
2 × 2 matrix on the space spanned by | ↑↓〉, | ↓↑〉. The con-
served quantity is N ≡

∑
i σ

z
i . We consider two separate

classes of initial product states: (i) random eigenstates of N
(i.e., random binary strings) and (ii) random product states
that are superpositions of different N sectors. The results are
shown in Fig. 3.

For (i) states that are initially random binary strings, the
Schmidt decomposition is block-diagonal. Each partition of
N intoNA “particles” in the sub-interval hasN−NA particles
in the complement, so ρA has no coherence between states of
different NA. Different-NA blocks do not repel each other,
so the global level statistics is Poisson [Fig. 3(b)]. Neverthe-
less, level repulsion persists within each individual block, and
yields a ramp-plateau structure in the ESFF [Fig. 3(a)]. The
ESFF is sensitive to level repulsion effects beyond nearest-
neighbor levels, and is therefore able to detect intra-block
structure, unlike the adjacent gap ratio.

For random product states (ii), the behavior is qualitatively
similar to that of random circuits, although there are quanti-
tative differences in entanglement growth rates [24]. Again,
GUE level statistics emerges on a fixed size-independent
timescale when the bond dimension of ρA is still grow-
ing [24]. The entanglement DOS behaves qualitatively as in
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the Haar random unitary circuit model although its bandwidth
grows even wider for conserving dynamics. One might have
expected level repulsion in the entanglement spectrum to sig-
nal chaos in the underlying dynamics; from this perspective,
the irrelevance of the conservation law is unexpected. We ob-
serve this feature persists even in dynamics that is not chaotic
but localized [24]. To summarize, for random product states,
the presence of a conservation law has no qualitative effect on
the evolution of the entanglement spectrum. Only when the
initial states are also eigenstates of the conserved charge does
one see qualitatively different evolution in the entanglement
spectrum.

(C) Ising model with transverse and longitudinal fields.—
To test the generality of our results we now turn to Hamilto-
nian dynamics. We consider the nonintegrable Ising Hamil-
tonian [Eq. (2)] and time-evolve a random product state. We
consider the total system L = 16 with the subsystem size
lA = 8. We observe the same scale-free 1/f probability
distribution of the eigenvalues of the reduced density matrix
[24] [Fig. 1 (a)] and find that the adjacent gap ratio [Fig. 1
(b)] approaches the GUE value on a o(1) time scale, indepen-
dent of subsystem size[24]. In addition we find the entangle-
ment bandwidth grows for times t < lA/2 and then shrinks
at late times. Distinct from RUCs, the entanglement band-
width starts from a non-zero initial value because the RDM is
full rank for Hamiltonian dynamics (since the light-cone set
by the Lieb-Robinson bounds is not strict but has exponential
tails). Lastly, the entanglement bandwidth shrinks well before
the entropy saturates [Fig. 1(d)]. This case evidently behaves
like the previous ones.
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FIG. 4. Dependence on the local Hilbert space q. (a) Entanglement
DOS at a fixed time, t = 2, as a function of local Hilbert space
dimension q. The shape of the DOS does not seem to change much
with q, though the average entanglement “energy” goes down as one
might expect. (b) Adjacent gap ratio r vs. q at a fixed time t = 1
and t = 2, these are the only times at which there are appreciable
deviations from GUE level statistics for q > 2 (the dashed line marks
the exact GUE value r ≈ 0.599).

Dependence on local Hilbert space.— We next compare
our results for different dimensions of local Hilbert space
q > 2, focusing on purely random circuits. Surprisingly, the
entanglement DOS stays broad for all the q we have consid-
ered [Fig. 4 (a)]; despite the expectation that this quantity nar-
rows as q → ∞ [8, 23], we see no clear sign of narrowing.
Thus, the approach to the known q →∞ behavior is slow and

possibly singular. Turning to the gap ratio r we find [Fig. 4
(b)] that for q ≥ 6 one has GUE statistics in the entangle-
ment spectrum for t = 1. Thus, at large q, the onset of level
repulsion in the entanglement spectrum is essentially instan-
taneous.

Discussion.—Our results can be qualitatively under-
stood [35] invoking operator spreading [9, 36–38], as follows:
one can expand the reduced density matrix in a basis of strings
of Pauli matrices, and study the evolution of these strings in
the Heisenberg picture. Strings initially localized on either
side of the cut spread out, under time evolution, to more com-
plicated operators that straddle the cut. Under the partial trace,
most such operators vanish. While the unitary evolution of
strings is rank-preserving, the partial trace “dephases” compo-
nents of the reduced density matrix and thereby increases its
rank. Heuristically, operators with a given amplitude, when
traced out, generate entries of that amplitude in the reduced
density matrix. At early times the density matrix is low-rank,
so adding a new entry of some size almost always creates a
new eigenvalue of the same size. This picture qualitatively
captures the entanglement DOS and level statistics. In RUCs,
the speed of the strict causal light-cone (vLC = 2) exceeds the
butterfly velocity vB at which generic operators spread. Thus,
terms that extend beyond the operator front but within the
causal light-cone get generated with small amplitude; those
closest to the light-cone are generated at time t with ampli-
tude exp{−[t(vLC − vB)]2/(Dt)} [9, 10, 39], where D is the
rate at which the front broadens. These exponentially small-
amplitude operators generate correspondingly small eigenval-
ues in the reduced density matrix, leading to entanglement
energies that grow linearly in t and thus accounting for the
observed linear bandwidth expansion. Once the light-cone
hits the edge of the subsystem, the density matrix is full rank,
and tracing out further operators cannot create new eigenval-
ues, but instead redistributes weight among existing eigenval-
ues, causing the spectrum to narrow. The entanglement level
statistics can be understood in similar terms: operators that
contribute nonzero Schmidt coefficients are those that have
crossed the entanglement cut; by virtue of this property they
all have overlapping support and are in causal contact. There-
fore it is natural for the corresponding eigenvalues to have the
statistics described by the random matrix theory [40].

Although we presented this argument for RUCs, it can
straightforwardly be adapted to Hamiltonian dynamics. The
density of states and level statistics of the entanglement spec-
trum behave qualitatively the same as with RUCs. The main
difference is that the reduced density matrix is always full-
rank so S0 is not meaningful. However, if one “regularizes”
S0 to include only eigenvalues above a certain threshold (that
is well above numerical precision), the resulting evolution is
qualitatively the same as in RUCs.

These results imply that the approach to full local equilib-
rium involves multiple stages, which the entanglement spec-
trum can distinguish. In principle this can be experimentally
tested by measuring Rényi entropies [41]; however, since the
local RDM is nonthermal, there exist local correlation func-
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tions that also diagnose this structure. Detecting scalable sig-
natures of multiple-stage relaxation, and of the nonthermal,
universal entanglement structure in this intermediate regime,
is an important task for future work.
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Phys. Rev. Lett. 110, 200602 (2013).
[23] T. Zhou and A. Nahum, arXiv preprint arXiv:1804.09737

(2018).
[24] See online supplemental material for details.
[25] E. H. Lieb and D. W. Robinson, in Statistical mechanics

(Springer, 1972) pp. 425–431.
[26] A. Chan, A. De Luca, and J. T. Chalker, Phys. Rev. Lett. 121,

060601 (2018).
[27] H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205 (2013).
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