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Through simultaneous but unequal electromechanical amplification and cooling processes, we cre-
ate a method for nearly noiseless pulsed measurement of mechanical motion. We use transient
electromechanical amplification (TEA) to monitor a single motional quadrature with a total added
noise −8.5± 2.0 dB relative to the zero-point motion of the oscillator, or equivalently the quantum
limit for simultaneous measurement of both mechanical quadratures. We demonstrate that TEA
can be used to resolve fine structure in the phase-space of a mechanical oscillator by tomographically
reconstructing the density matrix of a squeezed state of motion. Without any inference or subtrac-
tion of noise, we directly observe a squeezed variance 2.8± 0.3 dB below the oscillator’s zero-point
motion.

The past ten years has seen a dramatic improvement
in the ability to measure and control the quantum state
of macroscopic mechanical oscillators. Much of this
progress results from advances in the parametric cou-
pling of these oscillators to optical cavities or resonant
electrical circuits. These related fields of optomechanics
and electromechanics have demonstrated the ability to
cool mechanical oscillators to near their motional ground
state [1], entangle mechanical oscillators with each other
[2, 3] or with other degrees of freedom [4], and create
squeezed states of motion [5–7]. To verify the successful
creation of these non-classical states, electromechanical
and optomechanical methods have also enabled measure-
ments of mechanical motion with near 50% quantum effi-
ciency [8, 9], or equivalently an added noise equal to the
zero-point motion of the oscillator, the quantum limit for
simultaneous measurement of both mechanical quadra-
tures [10].

These advances have encouraged notions of using non-
classical states of motion to test quantum mechanics at
larger scales, sensing forces with quantum enhanced pre-
cision, and enabling quantum transduction between dis-
parate physical systems [11]. But as mechanical oscil-
lators are prepared in more profoundly quantum states
[12, 13], with finer features in oscillator phase-space, the
measurement efficiency must further improve to resolve
these fine features and to use them to realize a quantum
advantage.

Reaching higher levels of efficiency with existing meth-
ods is hindered by fundamental and technical limitations,
which seem difficult to overcome. In electromechanical
and optomechanical devices, the state of motion can be
converted without gain or added noise into a propagating
electric field, and one quadrature component of the field
can be measured nearly noiselessly [4, 8]. However, the
loss experienced by the field traveling between the de-
vice and the amplifier has prevented quantum efficiency
much greater than 50%. To improve measurement ef-

ficiency, the device can be used as its own parametric
amplifier, emitting an electric field that encodes an am-
plified copy of the mechanical oscillator’s state, thereby
overcoming any subsequent loss and inefficiency of the
following measurement chain. Using this strategy, both
quadratures can be measured simultaneously with added
noise very close to the quantum limit [9]. For steady
state monitoring of a single quadrature, backaction evad-
ing schemes are in principle, noiseless [6, 14]. However,
unwanted parametric effects, both parasitic [15, 16] and
intrinsic to the electromechanical Hamiltonian [17–19],
have prevented measurements with noise far below the
quantum-limited value.

In this Letter, we implement an efficient measurement
of a single mechanical quadrature, monitoring mechan-
ical motion with an added noise of −8.5 ± 2.0 dB rel-
ative to zero-point motion, and a quantum efficiency of
ηq = 88±5 %. By generating mechanical dynamics equiv-
alent to the time-reverse of dissipative squeezing [20], we
intentionally induce mechanical instability through the
electromechanical interaction, allowing for a pulsed mea-
surement of the initial state of the mechanical oscillator.
We term this protocol transient electromechanical am-
plification (TEA), and demonstrate the resolution of fine
features in phase space by using TEA to perform quan-
tum state tomography [21] on a dissipatively squeezed
state of the mechanical oscillator, from which we recon-
struct the mechanical density matrix.

The device (shown schematically in Fig. 1a) is an
aluminum inductor-capacitor (LC) circuit composed of
a spiral inductor and a compliant vacuum gap capac-
itor, which couples electrical energy to motion. The
LC circuit has a resonant frequency of ωc ≈ 2π × 7.4
GHz, and is coupled to a transmission line at a rate
κext ≈ 2π × 3.1 MHz. The compliant top-plate of the
capacitor (shown in Fig. 1b) is free to vibrate with a fun-
damental mechanical resonant frequency of ωm ≈ 2π×9.4
MHz and mechanical linewidth of Γm ≈ 2π× 21 Hz. For
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FIG. 1. (a) Schematic of experiment consisting of the elec-
tromechanical circuit (green) inductively coupled to a trans-
mission line. Pump tones are applied through a directional
coupler, while outgoing microwave signals are directed to a
chain of conventional microwave amplifiers and mixer circuits,
forming a microwave receiver, which adds noise much larger
than zero-point fluctuations. (b) False-color micrograph of
aluminum drum. The white bar corresponds to a distance of
approximately 10 µm. (c) Time and (d) frequency domain
representation of temporally overlapping dissipative squeez-
ing pump tone amplitudes (A(t) and A(ω)). (e) Time and (f)
frequency domain representation of transient electromechan-
ical amplification (TEA) pump tone amplitudes.

additional device parameters and details, see the supple-
ment [17]. The electromechanical system is attached to
the base plate of a dilution refrigerator, resulting in a me-
chanical occupancy of nm ≤ 40 in thermal equilibrium.

The electromechanical circuit is in the resolved side-
band regime [22], enabling coherent control of motion
with microwave tones. Applying a red detuned mi-
crowave pump to the LC circuit (∆ ≡ ωc − ωp = −ωm)
allows for sideband cooling [1], and state transfer be-
tween mechanical and microwave fields [23, 24], where
ωp is the frequency of the pump tone. A blue detuned
microwave pump (∆ = +ωm) creates entanglement be-
tween mechanical and microwave fields [4], and realizes a
quantum limited phase-insensitive amplifier of mechani-
cal motion [9]. Combining these two interactions, with
simultaneous application of red and blue detuned pump
tones, addresses two orthogonal mechanical quadratures
X+ = i√

2
(b† − b) and X− = 1√

2
(b† + b) independently,

and enables backaction evading measurement, dissipative
squeezing and TEA.

The type of interaction is determined by the sign of
Γem(t) = Γ−(t) − Γ+(t), where Γ±(t) are the electrome-
chanical growth and decay rates caused by the blue (+)
and red (-) detuned microwave tones respectively [4].
Dissipative squeezing occurs when Γem(t) > 0, which
cools the mechanical oscillator towards a squeeezed vac-
uum state [20]. The microwave control tones that enable
dissipative squeezing are shown schematically in the time

and frequency domain in Figs. 1c and 1d. Ideal backac-
tion evasion occurs when Γem = 0, where perfect con-
structive interference between sidebands decouples one
mechanical quadrature from microwave vacuum fluctu-
ations, producing a noiseless representation of a single
mechanical quadrature in a single microwave quadrature
[25]. Finally, TEA occurs when Γem(t) < 0, amplifying
motion with energy gain G ≈ e|Γem|t. Figures 1e and 1f
show the microwave pump tones used in the time and
frequency domain for TEA.

For both TEA and backaction evading measurement,
the motion of a single mechanical quadrature X is en-
coded in a single microwave quadrature U . The variance
of U can then be written as the sum of the noise contri-
butions from the signal and added noise:

〈∆U2〉 = Gtot

(
〈∆X2〉+ 〈∆X2

add〉
)
, (1)

where Gtot is the total gain of the microwave receiver
chain in units of V 2/quanta. If the total added measure-
ment noise 〈∆X2

add〉 is known, then the variance of the
mechanical state 〈∆X2〉 can be inferred. Equivalently,
by preparing a mechanical state with known variance the
added measurement noise can be characterized. For an
ideal single quadrature measurement 〈∆X2

add〉 = 0 and
U faithfully records one quadrature of of the mechanical
state. Approaching this ideal behavior is highly desirable
for characterizing quantum states of motion, as the num-
ber of repeated measurements required to reconstruct a
quantum state grows rapidly with added noise. Further-
more, assigning meaningful uncertainties to the extracted
density matrix after any inference or deconvolution pro-
cedure is complicated and subtle, diminishing confidence
in the inferred state.

For the two special quadratures X±, the noise prop-
erties of TEA are determined by the relative strength
of Γ+ and Γ−. Assuming optimal detuning of the mi-
crowave tones by exactly ±ωm and Γ± � κ/2 (avoiding
the strong coupling regime), the added noise 〈∆X2

add,±〉
referred to the input of TEA is given by

〈∆X2
add,±〉 ≈

(
√

Γ+ ±
√

Γ−)2 + Γm(2nm + 1)

2|Γem + Γm|
. (2)

In analogy with the high cooperativity limit, if
Γm(2nm + 1)/|Γem + Γm| � 1, then 〈∆X2

add,−〉 will be
less than zero-point motion. In the case where Γ− = 0,
equal noise will be added to both quadratures, enabling
nearly quantum limited phase-insentive amplification [9].
However, if the pump frequencies deviate from optimal
detuning, either through an initial detuning, or through
pump-power induced shifts in the circuit’s resonance fre-
quency, Eq. 2 is not valid, and theory including pump
induced mechanical and cavity frequency shifts is re-
quired [17]. Similarly, the variance of the squeezed
and anti-squeezed quadratures after dissipative squeez-
ing 〈∆X2

sq,±〉 takes the same form as Eq. 2, but with
Γ− > Γ+.
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FIG. 2. (a) General pulse protocol for characterization
of TEA and squeezing. The first overlapping red/blue-
detuned pulses determine whether the mechanical oscillator
is squeezed, cooled or allowed to thermalize with its environ-
ment. The second set of pulses tune the gain and added noise
of the measurement. The final red-detuned pulse transfers the
amplified state of the mechanical oscillator to the microwave
field for quadrature extraction. The pulse lengths are chosen
so that e|Γem|t is large, and provides sufficient amplification
gain or dissipative squeezing and cooling to overwhelm the
thermal noise of the mechanical environment. The pulse en-
velopes drawn are slower than in the experiment for visual
clarity. (b) A single experimental voltage trace of the down-
converted microwave field (ωhet = 2π×1.8 MHz) showing the
resulting exponential growth and decay of the microwave field
due to the amplification and transfer pulses respectively.

In Fig. 2a we demonstrate, in a three step protocol, the
control of the mechanical oscillator needed to study TEA.
An initial pair of pulses prepares the mechanical oscilla-
tor in a desired state, by either sideband cooling (Γ− > 0
and Γ+ = 0), dissipatively squeezing (Γ− > Γ+ > 0) or
letting the mechanical oscillator reach equilibrium with
its thermal environment (Γ+ = Γ− = 0). Following state
preparation, the motion of the mechanical oscillator and
the amplitude of the microwave field, are amplified by
applying red and blue pumps such that Γ+ > Γ−. Af-
ter a short delay, the red-detuned pump is pulsed on to
transfer the previously amplified state of the mechanical
oscillator to the microwave field [24]. After further ampli-
fication by a high-electron-mobility transistor (HEMT)
amplifier, and a room temperature measurement chain,
the signal is mixed down to ωhet = 2π × 1.8 MHz, al-
lowing the two mechanical quadratures to be extracted
from the exponentially decaying microwave field shown
in Fig. 2b.

We determine experimentally the total noise
〈∆X2

add,±〉 added during TEA by separately preparing
the mechanical oscillator in both a thermal state and
through sideband cooling. By comparing the variance
of these two states in a ratio, the added noise can
be inferred [17, 26]. Fig. 3a shows the total added
noise as a function of the ratio of red and blue pump
power. With the optimal ratio of the red and blue-
detuned pumps we find total added noise relative to
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FIG. 3. (a) Total added noise referred to the input of TEA rel-
ative to zero-point motion. Γ+ is varied, while Γ− = 2π×181
kHz is held constant. The circles are data, while theory
from Eq. 2 (including HEMT noise contributions) is shown
without any free parameters as the dashed lines, and devi-
ates significantly because the pump power is large enough
to induce additional parametric processes. The solid lines
are theory including parametric effects (with free parame-
ters) [17]. The inset illustrates the pulse sequence used for
the inference of 〈∆X2

add,±〉. Here, we obtain a minimum

added noise of 〈∆X2
add,−〉 = −8.5± 2.0 dB. (b) Inferred vari-

ance of the squeezed 〈∆X2
sq,−〉 and anti-squeezed 〈∆X2

sq,+〉
quadratures after dissipatively squeezing. Γ+ is varied, while
Γ− = 2π× 154 kHz is held constant. The minimum squeezed
variance is 〈∆X2

sq,−〉 = −7.9 ± 1.4 dB. The circles are the
data, while theory is shown without any free parameters as
the dashed lines, with the expected agreement at low pump
powers. The solid lines are theory including parametric ef-
fects (with free parameters) [17]. The inset illustrates the
pulse sequence for the inference of squeezing.

zero-point motion of 〈∆X2
add,−〉 = −8.5 ± 2.0 dB,

which is equivalent to a quantum efficiency of
ηq = (1 + 2〈∆X2

add,−〉)−1 = 88± 5%. We compare these
results to the prediction of Eq. 2 with no adjustable
parameters, illustrating poor quantitative agreement.
We attribute this discrepancy to additional squeezing of
the mechanical oscillator caused by non-linear mixing of
the microwave pumps. We find good agreement in a fit
to a more general theory that includes such processes
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[17, 19]. The two theories deviate significantly from
each other, but TEA nevertheless achieves a minimum
added noise equivalent to that predicted by the ideal
case in Eq. 2. We emphasize that 〈∆X2

add,±〉 is the total
noise added by the entire measurement chain, and for
Γ+/Γ− > 1.3 TEA has large enough gain to overwhelm
the noise added by the HEMT amplifier [17].

Avoiding the noise associated with the simultaneous
measurement of non-commuting observables is of partic-
ular importance when measuring mechanical states with
a width in phase space less than the zero-point motion
of the oscillator [27], and is desirable for many quantum
state tomography protocols [28]. Thus, to test the effec-
tiveness of TEA on states with variance below zero-point
fluctuations, we prepare squeezed states of motion using
the dissipative procedure illustrated in the inset of Fig.
3b. To infer the total amount of squeezing, the motion
is first squeezed for 90 µs, then a 30 µs blue-detuned mi-
crowave pulse (Γ+ = 2π×73 kHz and Γ− = 0) is applied
to amplify both motional quadratures. The variance as-
sociated with zero-point motion, which must be added
by the phase-insensitive amplifier, is subtracted to infer
the variance of the squeezed and anti-squeezed quadra-
tures, which is shown in Fig. 3b. We obtain a maximum
inferred vacuum squeezing of 〈∆X2

sq,−〉 = 7.9 ± 1.4 dB
below the zero-point motion of the mechanical oscillator.
We are able to far surpass the so-called steady state 3 dB
squeezing limit both because we are using pulsed oper-
ations, and more than a single mode is involved during
dissipative squeezing [29]. Theory without any free pa-
rameters is plotted as the dashed lines in Fig. 3b, which
agrees well at low pump powers. The solid lines show
predicted squeezing when including additional paramet-
ric effects induced by nonlinear mixing of the two mi-
crowave pumps (with free parameters) [17].

Having demonstrated that we can prepare a squeezed
state with variance below zero-point motion, the abil-
ity of TEA to resolve fine phase space features can be
tested by performing quantum state tomography on the
squeezed mechanical state. By rotating a noiseless sin-
gle quadrature measurement through all possible mea-
surement axes, a set of phase space marginals can be
recorded, and the density matrix can be reconstructed
via quantum state tomography [30–34]. Figures 4a and
4b show histograms of a sideband cooled (nsb ≈ 0.02) and
a dissipatively squeezed state of the mechanical oscilla-
tor as a function of the tomography angle φ. Figure 4c
demonstrates the rotation of the single quadrature mea-
surement axis relative to the prepared squeezed state by
φ.

The minimum width that can be resolved in the to-
mography data 〈∆Xmin(φ)2〉 is an important figure of
merit for single quadrature measurements in the quan-
tum regime. In Fig. 4d the total variance as a function
of tomography angle is computed with theory (using in-
dependently measured parameters) shown as the solid
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FIG. 4. Measurement of mechanical squeezed and sideband
cooled states with single quadrature TEA. (a) A density plot
of the marginal distributions of a sideband cooled state as
a function of tomography angle φ. (b) A density plot of
the marginal distributions of a squeezed state using single
quadrature TEA as a function of φ. (c) The schematic shows
the rotation of the single quadrature measurement axis X(φ)
relative to the prepared squeezed state. The squeezed vari-
ance is represented as the blue ellipse. (d) The total mea-
sured variance of a sideband cooled state with nsb ≈ 0.02
(green) and squeezed vacuum (blue), which exhibits squeez-
ing 2.8±0.3 dB below zero-point motion. The data points are
the circles, while theory (with no free parameters) is the solid
line. (e) Squeezed and (f) sideband cooled diagonal density
matrix elements are inferred from tomographic reconstruction
of the covariance matrix. The errorbars represent 90% confi-
dence intervals estimated with an empirical bootstrap of the
tomography data.

blue line. The squeezed quadrature has a total variance
of 〈∆Xmin(φ)2〉 = 〈∆X2

sq,−〉+ 〈∆X2
add,−〉 = 2.8± 0.3 dB

below the zero-point motion of the mechanical oscillator.
We emphasize that this represents the total reduction in
noise that is present at the end of our conventional mi-
crowave receiver and no noise is subtracted to find this
result.

The marginal distributions (1.4 × 105 points in to-
tal) can be used to reconstruct the density matrix of
the quantum state in the number basis. For a general
quantum state, iterative methods of tomographic recon-
struction [21]–based upon maximum likelihood–are a re-
liable method of estimating quantum states [28], and are
guaranteed to produce a physical density matrix. How-
ever, tomographic reconstruction of squeezed states in
the Fock basis requires estimating density matrix ele-
ments up to very high phonon number [33, 35]. To avoid
calculating large density matrices we assume Gaussian
Wigner quasiprobability distributions [36], and estimate
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the density matrix through reconstruction of the covari-
ance matrix [37]. The covariance matrix is then used
to infer the Fock basis density matrix of the mechani-
cal oscillator. In Figs. 4e and 4f we plot the inferred
diagonal density matrix elements for the squeezed vac-
uum and sideband cooled states, with the error bars on
the measurements representing 90 % confidence intervals
from an empirical bootstrap procedure [17, 38]. From the
density matrix we also infer the purity of the squeezed
state to be µ ≡ 1/(1 + 2nsq) = 0.53 ± 0.03 [17], where
nsq is the equivalent thermal occupation of the squeezed
state. This demonstrates the direct resolution of fea-
tures in phase space with a width approximately half
that of zero-point fluctuations and the ability to resolve
the squeezed character in the number basis.

Mechanical devices are increasingly being integrated
into circuit QED systems as resource efficient elements,
transducers and quantum memories, which offer access
to new regimes of circuit QED [12, 13]. By directly
using mechanical instability as a probe, TEA can ef-
ficiently measure motion in the presence of additional
nonlinear effects. Combining TEA with already demon-
strated [9] quantum state transfer techniques provides a
path towards efficient tomography of non-Gaussian states
in macroscopic mechanical oscillators.
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