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Open quantum systems can have exceptional points (EPs), degeneracies where both eigenvalues
and eigenvectors coalesce. Recently, it has been proposed and demonstrated that EPs can enhance
the performance of sensors in terms of amplification of a detected signal. However, typically ampli-
fication of signals also increases the system noise, and it has not yet been shown that an EP sensor
can have improved signal to noise performance. We develop a quantum noise theory to calculate the
signal-to-noise performance of an EP sensor. We use the quantum Fisher information to extract a
lower bound for the signal-to-noise ratio (SNR) and show that parametrically improved SNR is pos-
sible. Finally, we construct a specific experimental protocol for sensing using an EP amplifier near
its lasing threshold and heterodyne signal detection that achieves the optimal scaling predicted by
the Fisher bound. Our results can be generalized to higher order EPs for any bosonic non-Hermitian
system with linear interactions.

A distinct feature of physical systems described by
non-Hermitian operators are exceptional points (EPs),
degeneracies at which not only eigenvalues but also the
eigenstates coalesce [1–4] enhancing the repulsion and
leading to a larger frequency splitting when detuned. EPs
have been extensively discussed in the context of gen-
eralizing the standard quantum theory to include non-
Hermitian Hamiltonians [5]. However even within the
conventional quantum framework, the effect of EPs in
open systems can already be studied, either by looking
at resonant scattering or by treating unobserved degrees
of freedom as lossy or amplifying reservoirs, as reviewed
in [6]. Many interesting effects of EPs have been studied
in electromagnetic or optomechanical systems [7–13]; of-
ten these systems have parity-time symmetry[8, 14–17],
although this symmetry is not essential to the existence
of EPs.

One intriguing application of EPs is to enhance the
performance of sensors, which has been theoretically pro-
posed [18–20] and experimentally demonstrated using op-
tical micro-ring resonators [21, 22]. In these sensors the
small parameter ε to be estimated acts as a perturbation
to the system Hamiltonian, which is non-Hermitian due
to intrinsic loss. For example, in optical-cavity systems,
thermal effects or cavity shape deformation shift the com-
plex resonant frequencies of the cavity, which can be mea-
sured by locating the centers and widths of the peaks in
the frequency spectrum of the scattered output signal.
If the unperturbed Hamiltonian is not at an EP initially,
those frequencies will be shifted by amounts proportional
to ε. Now we create an EP by tuning the initial Hamil-
tonian with additional non-Hermitian dynamics (e.g. ex-
tra lossy or gain channels), bringing two or more reso-
nances to degeneracy without imposing any additional
symmetries. The perturbation theory of EP’s leads to

a novel phenomenon: if n resonances have coalesced at
an n− 1th-order EP, then the eigen-frequency difference
δω of two of the perturbed resonances is proportional to
ε1/n. Therefore, the sensitivity of the splitting to the per-
turbative strength d(δω)/dε ∝ ε(1−n)/n, which tends to
infinity when ε tends to 0, is parametrically larger than
for non-EP systems, and hence proposed as a promising
approach for enhancing sensing precision [18–20]. This
type of enhanced frequency sensitivity was demonstrated
in the micro-ring experiments [21, 22], where fabrication
and fine-parameter-tuning of EP are already available in
laboratories.

But there has been no systematic analysis of the effect
on the noise and the signal-to-noise ratio (SNR) of a sen-
sor operating in the vicinity of an EP. According to quan-
tum noise theory [23], the gain (and loss) introduced by
non-Hermitian dynamics will unavoidably generate addi-
tional noise. For example, in the context of the bounded
modes of cavities with extrinsic pumping, the perturba-
tion near EP amplifies both the mode amplitude and the
added quantum noise to the same degree, making it du-
bious that the SNR will be enhanced [24] (assuming the
sensor is operating near the quantum noise limit, and is
not dominated by extrinsic noise sources). In quantum
sensing, the close relation between SNR and the ultimate
precision threshold has been pointed out [25]. Therefore,
in evaluating the efficacy of EP sensors, it is crucial to
understand the behavior of both signal and noise near an
EP.

In this Letter, we address the following questions: (1)
Can operating near an EP enhance the SNR of a sensor?
(2) What is the maximal precision (in terms of SNR) of
EP sensing schemes? (3) How can we design a scheme to
achieve this ultimate precision? To answer them, we first
apply quantum noise theory [23] to calculate the ampli-
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tude and covariance matrix associated with the outputs
of an EP sensor; then calculate the quantum Fisher infor-
mation of the output state and obtain the Cramér–Rao
bound for the parameter estimation. Finally we explicitly
construct an amplifying EP sensor achieving this optimal
sensitivity scaling, using muti-mode heterodyne detec-
tion (i.e. measuring a specific vector µout of the scattered
output signal, known in optics as quadratures), ideally at
the lasing threshold. Our scheme does not use frequency
splitting near an EP, but rather the amplitude change
(i.e. dµout/dε ) of an amplified superposition of output
quadratures, which is our output signal, near the lasing
frequency, with the system tuned to the lasing threshold,
i.e. in the parameter regime where the imaginary part of
the resonant eigen-frequency vanishes.

The conventional defintion of SNR is compatible
only with scalar-form signals. Because of the vector-
form output signal in our system, we modify the con-
ventional definition to a multivariate form, namely
(dµout/dε)

TV−1out(dµout/dε) with Vout the covariance ma-
trix of the output signal µout. For convenience we will
also call this modified measure the SNR [26]. Later,
we will show its close relation to the quantum Fisher
information, analogous to what is known in quantum
sensing [25]. The results can be generalized to higher-
order EPs for any bosonic non-Hermitian system with
linear interactions, i.e. involving only Gaussian processes
[27]. There are already studies on open system quantum
metrology where decoherence is typically modelled in
the form of Lindbladian master equations or completely-
positive-and-trace-preserving (CPTP) maps, but these
have not given a clear and explicit treatment for non-
Hermitian systems [28–32]. The methods of quantum
metrology are also routinely applied to the optimization
of sensors [33–35], but these studies are not focused on
noisy Gaussian quantum systems.

Non-Hermitian dynamics and open quantum systems.
We define a non-Hermitian Hamiltonian to characterize
the open system [6]. A generic model is shown in Fig. 1a;
we have coupled cavities with two resonant modes a1 and
a2, with the non-Hermitian hamiltonian (setting ~ = 1)

Ĥ = (ω1 + ε) â†1â1 + (ω2 + ε) â†2â2 + g
(
â†1â2 + h.c.

)
− iγ1

2
â†1â1 + i

γ2
2
â†2â2, (1)

where the total loss/gain rates of modes 1, 2 are γ1, γ2
and g is the inter-cavity coupling. Assume that the real
parts of the resonance frequencies can be tuned to ω1 =
ω2 = ω, and the perturbation to be sensed uniformly
shifts the frequencies of both modes by ε. The resulting
equation of motion in the classical limit is

d

dt

(
a1
a2

)
= −i

(
(ω + ε)− iγ12 g

g (ω + ε) + iγ22

)(
a1
a2.

)
(2)
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Figure 1. (a). Schematic of two-bosonic-mode system with
loss and gain modeled classically. (b). Schematic of two-
bosonic-mode system with a full quantum description. The
circles labeled represent two bosonic modes a1 and a2, coupled
to probing channels A1 and A2. In addition to the probing
channels, a1 is intrinsically dissipated by scattering channel
B1 and a2 is intrinsically amplified by scattering channel B2,
with different coupling interactions. The arrows in the chan-
nels which point towards the system modes represent the in-
put modes, while those with opposite direction represent the
output modes.

The above equation is characterized by the 2×2 matrix
derived from the non-Hermitian Hamiltonian. It has an
EP [6] when the condition (γ2+γ1)2/16 = |g|2 is satisfied,
where the originally orthogonal eigen-modes of this equa-
tion of motion coalesce to a single mode with resonant
frequency Ω = (ω+ε+i(γ2−γ1))/4. Note that if γ2 = γ1
is also satisfied, Ω is real and hence called the lasing fre-
quency. EP-enhanced sensing will be achieved by moni-
toring the quadrature amplitudes associated with a1, a2
at fixed ω as the EP (and lasing frequency) is shifted
by the perturbation ε. Due to the EP, the resonance
amplitude falls off as ε−2, leading to higher sensitivity.
However Eq. 2 only describes the average behavior near
the EP and not the noise properties.

The imaginary parts of the coupling rates γ1, γ2 arise
from a combination of outcoupling to the probe chan-
nels A1, A2 with rates κ1, κ2, and loss and gain pro-
cesses in the cavities with rates η1, η2 [36]. For sim-
plicity we assume κ1 = κ2 = κ. Hence, the total loss
and gain rates are γ1 = η1 + κ and γ2 = η2 − κ for
the two modes, respectively. We denote A1,in(out) and
A2,in(out) for the complex amplitudes of the two input
(output) probe channels, satisfying the input-output re-
lation (A1,out, A2,out) = (A1,in, A2,in) +

√
κ(a1, a2). To
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fully characterize the noise properties, we also need to
model the fluctuations associated with the intrinsic loss
η1 and gain η2. As shown in Fig. 1b, this can be done
by introducing two auxiliary scattering channels B1 and
B2 to simulate the intrinsic dissipation and amplifica-
tion processes in a1 and a2. According to quantum noise
theory [23], B1 is coupled to a1 via a beam-splitter-
type interaction B̂†1â1 +h.c. with coupling strength √η1,
while B2 is coupled to a2 via a squeezer-type interaction
B̂†2â

†
2 + h.c. with coupling strength √η2. The quantum

Langevin equations for both modes are

d

dt

(
â1
â2

)
=− i

(
(ω + ε)− iγ1(κ,η1)2 g

g (ω + ε) + iγ2(κ,η2)2

)(
â1
â2

)

+

(√
κÂ1,in√
κÂ2,in

)
+

( √
η1B̂1,in

−√η2B̂†2,in

)
, (3)

which now has additional noise B̂1,in, B̂
†
2,in compared

with Eq. (2), inducing dependence of γ1, γ2 on κ, η1
and η2.

Amplitude vector and covariance matrix. To model
the dissipation and amplification, we can simply set the
channels B1 and B2 to zero average amplitudes, i.e.
vacuum. For any pair of bosonic annihilation and cre-
ation operators â and â†, we define a pair of “position”
and “momentum” quadrature operators q̂ = â + â† and
p̂ = −i

(
â− â†

)
[27]. Given any state of N modes, the

amplitude vector µ and covariance matrix V can be de-
fined in the quadrature basis µj = 〈x̂j〉 and Vj,k =
1
2 〈x̂jx̂k + x̂kx̂j〉−〈x̂j〉 〈x̂k〉, for 1 ≤ j, k ≤ N , with vector
x̂ = (q̂1, q̂2, . . . , q̂N , p̂1, p̂2, . . . , p̂N )

T , and 〈·〉 the expecta-
tion value [27].

To compute them, we perform the Fourier transform of
Eq. (3) to obtain the relation between the Fourier trans-
formed operators Â [ω] ≡

∫
Â(t)e−iωtdt of the input and

output ports. The amplitude vector and covariance ma-
trix of the probe output channels are [37]

µout = (I−Gθ)µin, (4)

Vout = (I−Gθ) Vin (I−Gθ)
T

+ GθRV′inRTGT
θ , (5)

where

θ = ε/κ (6)

is the dimensionless perturbation strength, µin and Vin
are the amplitude vector and covariance matrix of the
probe input channels (A1,in [ω], A2,in [ω]), V′in is the co-
variance matrix of the auxiliary input channels (B1 [ω],
B2 [−ω]), R = diag

{√
η1,−

√
η2,
√
η1,
√
η2
}
. The dimen-

sionless linear response matrix Gθ [37] is

Gθ = −Ω (θI−M)
−1
, (7)

where the symplectic form Ω = (0, I;−I, 0), and
the 4 × 4 matrix M = (0, G,Γ1, 0;G, 0, 0 −
Γ2;G, 0, 0,−Γ2;−Γ1, 0, 0, G; 0,Γ2, G, 0) is the dimension-
less effective Hamiltonian in quadrature basis [39] with
dimensionless parameters Γ1 = γ1/ (2κ), Γ2 = γ2/ (2κ),
and G = g/κ.

For most applications, it is sufficient to consider Gaus-
sian states for the probe and auxiliary input channels.
Since Ĥ involves only linear interactions between modes,
the output states are also Gaussian, and are completely
characterized by the µout and Vout [27]. Hence, the above
calculations are sufficient to characterize the performance
of sensing.

EP sensing. By choosing Γ1 = Γ2 = G the system
will be at the lasing threshold and will remain at an EP
as the perturbation shifts the lasing frequency shifted
by θ (the situation where the system is not exactly at
the lasing threshold will be discussed later). We then
have a non-trivial Jordan decomposition of the matrix
M = PΛP with an invertible matrix P [40], and Λ =
(0, 1, 0, 0; 0, 0, 0, 0; 0, 0, 0, 1; 0, 0, 0, 0).

For small perturbation θ � 1, the response matrix
grows as a polynomial of θ−1

Gθ = −Ω (θI−M)
−1

= −θ−1
∞∑
n=0

θ−nΩMn

= −θ−1Ω− θ−2ΩM, (8)

where the second equality uses the Taylor expansion and
the third equality uses Mn = 0 for n ≥ 2. The first
and second terms of Gθ are due to lasing threshold and
EP respectively. The second term implies an enhanced
output signal (the amplitude vector [Eq. (4)]) at ω as θ →
0. However, the noise (the covariance matrix [Eq. (5)])
contains a θ−4 term because of its dependence on Gθ [37],
and hence diverges as θ → 0. Therefore one might expect
that there is no hope of enhancing the sensitivity of the
signal with respect to the noise. However, systematic
calculation of the uncertainty of the measured parameter
θ in the presence of noise shows this is not necessarily
true. In the following, we first provide a lower bound to
sensitivity using the quantum Cramér–Rao bound and
then provide an EP sensing protocol which achieves the
same θ-scaling as that bound.

Sensitivity lower bound. In the presence of noise, the
standard deviation of the estimates of the parameter θ,
calculated from data obtained from some measurement,
is bounded by the inverse of the quantum Fisher informa-
tion I (θ) of the state through the quantum Cramér–Rao
inequality [41]

δθ ≥ I (θ)
−1/2

. (9)

For Gaussian processes (e.g. our scheme), the quan-
tum Fisher information [42, 43] takes the form I (θ) =
IV (θ) + Iµ (θ), where IV (θ) is always positive and only
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depends on Vout, and

Iµ (θ) =

(
dµout

dθ

)T
V−1out

dµout

dθ
. (10)

Since IV (θ) is only determined by fluctuations in the
absence of the probe, the quantum Fisher information is
dominated by Iµ (θ) for sufficiently strong input probes.
Eq. (10) is the SNR generalized to be compatible with
vector-form inputs, as alluded to in the introduction.

We plug Eqs. (4, 5&8) into Eq. (10) and obtain [37]

Iµ (θ) = θ−4 (c0 +O [θ]) , (11)

implying the leading contribution to the quantum Fisher
information scales at least as θ−4 (orange curve ( )
in Fig. 2) and the sensitivity, δθ ≥ c0× θ2, with constant
c0 > 0 determined by the choice of input probe signals
in generic situations [37]. This EP-enhanced behavior
is compared with a non-EP scheme (with g = η1 = 0)
which shows no enhancement as θ → 0 (the solid green
curve ( ) in Fig. 2). Hence, EP sensing has a more
favorable lower bound than the conventional protocols.

One can intuitively understand the improvement by
EP as a result of correlations between different eigen-
modes of the output state. Due to the EP structure of the
matrix Gθ, different linear combinations of the quadra-
tures will accumulate noise with different θ-dependence.
For our system, only two orthogonal directions in the
four-dimensional input space lead to noise amplified by
θ−4 [37]; thus there is a large remaining subspace of in-
puts for which the SNR is enhanced by operating at or
near an EP.

Heterodyne detection to achieve optimized EP sensing
scaling. The Cramér–Rao bound applies to all possible
sensing schemes; now we provide a specific EP sensing
scheme that achieves the same scaling predicted by the
Cramér–Rao bound. The idea is to use heterodyne mea-
surement to extract the output amplitude vector µout.
The covariance matrix associated with the heterodyne
detection is Vout + I [37, 44], which includes the addi-
tional quantum noise inherent in the simultaneous mea-
surement of both position and momentum quadratures.
Fortunately, this additional noise has no θ-dependence,
and becomes negligibly small compared to Vout for θ →
0. Hence, we have (Vout + I)

−1
= V−1out (I +O [θ]) ≈

V−1out.
For example, by injecting a coherent state with µin =

P ·(0, 1, 0, 0)
T , the heterodyne detection can measure the

output amplitude vector µout = (I−Gθ)µin = µin −
ΩP ·

(
θ−2, θ−1, 0, 0

)T . We can obtain uncertainty δθ ≈
Iµ(θ)−1/2 ∼ θ2, which has the same scaling as the lower
bound obtained from Eqs. (9,10,11).

General approach and higher-order EP sensing. We
summarize our general approach to achieve EP sensing
with the same scaling as the Cramér–Rao bound. For
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Figure 2. Smallest achievable standard variations deter-
mined by the Cramér–Rao-bound). All solid curves: minimal
standard variation of parameter θ. Solid orange ( ):
two-mode EP sensing at the lasing threshold with all modes
perturbed. Solid blue ( ): two-mode EP sensing at
lasing threshold with only one mode perturbed. Solid green
( ): single-mode conventional sensing, no additional
loss or gain. Dashed orange ( ), blue ( ),
and green ( ): reference lines for θ2, θ1, and θ0 scal-
ing. Dot-dashed purple ( ): two-mode EP sensing
below lasing threshold, with additional loss δ = 0.05Γ added
to each cavity.

an EP sensing scheme based on a Gaussian process, we
calculate the corresponding matrices to track the change
of amplitude and covariance matrix. Then we can cal-
culate the quantum Fisher information and obtain the
precision bound. Generally, Gθ = −Ω (θΠ−M)

−1 (in
our previous discussion, Π = I, but it is invertible in
general), and MΠ−1 = PΛP−1, with P invertible , and
Λ known as the Jordan normal form of MΠ−1 consist-
ing of diagonal blocks of size Ni (for the ith block), each
with eigenvalue zero. When Ni = 1, the corresponding
block is just a scalar, which is not an EP. To have EP en-
hanced sensing, we need at least one non-trivial Jordan
block (Ni ≥ 2) with eigenvalue zero.

Let N = maxiNi be the size of the largest zero-
eigenvalue Jordan block, corresponding to the (N − 1)-
th order EP. Then it is easy to show that Gθ =
θ−N (−ΩC0 +O (θ)) + · · · with θ → 0 with C0 a con-
stant matrix. This divergence near θ = 0 leads to θ−N
amplification of the amplitude and θ−2N amplification of
the covariance matrix. One might be tempted to argue
that the Iµ (θ) is then proportional to θ−2 since the scal-
ing of amplification with N can be perfectly canceled by
covariance matrix. However, a more rigorous calculation
shows this is overly pessimistic. As dGθ/dθ = GθΠΩGθ,
only one Gθ cancels with the amplification in the covari-
ance matrix. We have Iµ (θ) = µTinGT

θ C1Gθµin, where
C1 is a positive-definite matrix [37]. So Iµ (θ) ≈ θ−2N

for (N − 1)-th order EP. Since IV (θ) is always positive,
Iµ (θ) gives a lower bound on quantum Fisher informa-
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tion. We have then the quantum Cramér–Rao bound
δθ & θN [45], the scaling of which can be achieved by
performing heterodyne measurement on all of the out-
puts even in this general situation.

Robustness of enhanced sensing The key conditions
for enhanced sensing are precise tuning to an EP and
operating the sensor at the lasing threshold. As noted
above, when satisfied, there are a large family of input
states generating enhanced sensitivity for appropriately
chose outputs, i.e. the sensor is robust to the choice
of input state. While operation at the lasing thresh-
old condition is assumed in order to derive the results
above, we can actually relax this condition, and still
achieve sensitivity enhancement over some parameter
range. A small perturbation δ from the lasing threshold
will simply suppress the enhanced sensing θ below some
cutoff. As shown in purple curve ( ) in Fig. 2,
when we introduce additional loss δ to both cavities,
the quantum Fisher information is upper bounded by
IUB ≈ ‖Gθ=0‖2 ≈ δ−4, where ‖·‖ represents the trace
norm [37]. So long as the system is sufficiently close to the
lasing threshold (δ � θ), the quantum Fisher information
does not exceed the upper bound (I ≈ θ−4 � IUB), and
the EP supports enhanced SNR. Generally, for higher
order EPs, we will have EP-enhanced sensing near the
lasing threshold as long as the additional loss δ is much
smaller than the signal θ [37].

In conclusion, we have established a theoretical frame-
work using quantum noise theory to calculate systemat-
ically both the signal and noise of EP sensors operating
near the lasing threshold. Using the quantum Fisher in-
formation, we have obtained the lower bound of ultimate
sensitivity of EP-sensors. Moreover, we provide a hetero-
dyne detection scheme to achieve the optimal scaling of
the sensitivity predicted by this bound. Since these EP
sensors are described by Gaussian processes with linear
interactions, EP sensing near the laser threshold coupled
with heterodyne detection should be feasible with current
experimental techniques, such as the micro resonators of
[21, 22].

Note added: During the completion of this work, we
became aware of several related but different studies
[46, 47]. In Lau and Clerk’s work [46], the authors are
proposing another way of achieving enhanced precision
limit, i.e., by constructing non-reciprocal coupling with
the reservoir, while the function of EPs and lasing thresh-
old are not discussed. In [47] by Chen, et.al., although
a two-mode EP sensor is studied, the authors did not
mention the function of lasing threshold.
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0015), ARO MURI (W911NF-16-1-0349), NSF (EFMA-
1640959, DMR-1743235), Alfred P. Sloan Foundation
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