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We explore the behavior of micron-scale autophoretic Janus (Au/Pt) rods, having various Au/Pt
length ratios, swimming near a wall in an imposed background flow. We find that their ability to
robustly orient and move upstream, i.e. to rheotax, depends strongly on the Au/Pt ratio, which is
easily tunable in synthesis. Numerical simulations of swimming rods actuated by a surface slip show
a similar rheotactic tunability when varying the location of the surface slip versus surface drag. Slip
location determines whether swimmers are pushers (rear-actuated), pullers (front-actuated), or in
between. Our simulations and modeling show that Pullers rheotax most robustly due to their larger
tilt angle to the wall, which makes them responsive to flow gradients. Thus, rheotactic response
infers the nature of difficult to measure flow-fields of an active particle, establishes its dependence
on swimmer type, and shows how Janus rods can be tuned for flow responsiveness.

Swimming microorganisms must contend with bound-
aries and obstacles in their natural environments [1–
3]. Microbial habitats have ample surfaces, and swim-
mer concentrations near them promote attachment and
biofilms [4, 5]. Motile bacteria and spermatozoa accu-
mulate near boundaries, move along them [6, 7], and
self-organize under confinement [8–11]. Microswimmers
also exhibit rheotaxis, i.e. the ability to actively reorient
and swim against an imposed flow [12]. Surfaces are key
for rheotactic response: fluid shear near boundaries re-
sults in hydrodynamic interactions which favor swimmer
alignment against the oncoming flow and prevent swim-
mer displacements across streamlines [13–17]. Swimmers
with different propulsion mechanisms – front-actuated
like puller micro-algae, or rear-actuated like pusher bac-
teria – exhibit associated dipolar flow fields [18–20] which
result in dissimilar collective motions [21–23] and behav-
ior near boundaries or in flows [24–29].

Recent advances in the manufacture and design of arti-
ficial swimmers have triggered an acute interest in devel-
oping synthetic mimetic systems [3, 30–34]. Like their bi-
ological counterparts, artificial swimmers can accumulate
near boundaries [35, 36], navigate along them [37, 38], be
guided by geometric or chemical patterns [39–42] or ex-
ternal forces [43, 44], and can display rheotaxis near pla-
nar surfaces [45–47]. While models have been developed
to study their locomotion and behavior [24, 35, 48, 49],
the relevance of the swimmers’ actuation mechanism and
the resulting hydrodynamic contributions to their rheo-
tactic motion remains an open question. In large part
this is due to the difficulty in directly assessing swim-
mers’ flow-fields, particularly near walls, and relating ex-
perimental observations to our theoretical understand-
ing of swimmer geometry, hydrodynamics and type (i.e.,
pusher or puller).

FIG. 1: Micrographs of the different bimetallic swimmers ob-
tained with reflection microscopy (wavelength 495 nm). The
ratio of the metallic segments varies from (a) 1:1 for symmet-
ric, to (b) 3:1 for long-gold and to (c) 1:3 for long-platinum.
Scale bar 1 µm. (d) Each swimmer type is tested in a rectan-
gular microfluidic channel where it is gravitationally confined
near the bottom. Under shear flow the metallic particles swim
upstream.

In this Letter, we address this question with experi-
ments using chemically powered gold-platinum (Au/Pt)
microswimmers combined and compared with numerical
simulations. In experiments we vary the position of the
Au/Pt interface along the swimmer length, postulating
that this varies the location of the flow actuation region,
and that observed differences in rheotaxis can be related
to having different pusher- or puller-like swimmers. In
simulation, we study the rheotactic responses of rod-like
microswimmers that move through an active surface
slip. Different placements of the slip region allow us to
create pullers, symmetric, and pusher microswimmers.
We find measurably different rheotactic responses in
simulation which show quantitative agreement with our
experiments with Au/Pt active particles conducted in
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microfluidic channels.

Experimental setup and measurements. Our
Janus microswimmers are elongated Au/Pt rods, ∼ 2 µm
in length and d ∼ 0.3 µm in diameter, which propel
themselves through self-electrophoresis in aqueous H2O2

solutions [32, 34]. The swimmers are synthesized by elec-
trodeposition [30, 50] to a prescribed ratio of the two
metallic segments: symmetric with Au:Pt (1:1), asym-
metric long-gold with Au:Pt (3:1) and asymmetric long-
platinum with Au:Pt (1:3); see Fig. 1a-c, details in [51].

The swimmers’ rheotactic abilities are tested in a
rectangular PDMS microfluidic channel of width W =
300 µm built following classical soft-lithography tech-
niques [52]. We control the background unidirectional
flow down the channel (the x-direction) using an off-
stage hydrostatic column. Suspended glass beads of ra-
dius rb ∼ 2.5 µm serve as markers to measure the flow
profile close to the bottom of the channel where the rods
move. We record the trajectories of swimmers and beads
over 1 minute and extract the instantaneous velocities of
swimmers Vx and of beads Ub, along the x-axis. See Fig.
1d and videos in [51].

Thermal fluctuations are important at this scale and
the swimmers mean square displacement for U0 = 0 at
a fixed H2O2 concentration are used to estimate their
translational and rotational diffusivities, Dt and Dr, and
deterministic base-line swimming speeds V0 [31, 51]. At
fixed H2O2 concentration, swimming speeds are smaller
for asymmetric rods than for symmetric ones, therefore
H2O2 concentration is adjusted to maintain a comparable
velocity V0 between experiments.

The background flow profile close to the wall U0(z) is
measured by the drift velocity Ub of the suspended glass
beads. As the beads move close to the wall, we find it
important to account for the lubrication forces that act
upon them [53]. The flow velocity is estimated to be
U0(rb+hth) ∼ 2.5Ub for a thermal height hth ∼ 4 nm [51].

Model and Simulations. Resolving the chemi-
cal and electro-hydrodynamics near a wall is challeng-
ing. The electro-osmotic flow near an self-diffusiophoretic
swimmer is the result of charge gradients localized on a
small surface region near the junction of the two metal-
lic segments [30]. We make the simplifying assumption
that this results in a surface slip velocity yielding the
rod propulsion with the Pt segment leading. As we do
not know the extent of the slip region, we simply assume
that it covers half the rod length. The propulsion speed
depends on the slip coverage.

We model the swimmer as a rigid, axisymmetric rod
immersed in a Stokes flow and sedimented near an infi-
nite substrate. The rod is discretized using Nb “blobs”
at positions (ri − q) with respect to the rod center q
[51, 54, 55]. Linear and angular velocities u and ω sat-
isfy the linear system Eqs. (1)-(2) where λi are unknown

FIG. 2: Computed velocity fields around simulated self-
propelled rods with a surface slip region (shown in red) (a) at
the center, (b) at the front, and (c) at the rear, corresponding
to, symmetric, puller and pusher swimmers, respectively.

constraint forces enforcing rigid body motion and M is a
regularization of the Green’s function of the Stokes equa-
tion that account for the hydrodynamic interactions be-
tween blobs. Here we use the Rotne-Prager mobility ten-
sor [56] corrected to include the hydrodynamic effect of
the substrate [57, 58].

Eq. (1) represents the balance of the geometric con-
straint forces with the external force F and torque τ gen-
erated by steric interactions with the substrate and grav-
ity [51]. Eq. (2) gives the balance of fluid, propulsive,
and thermal forces, with ũi the active slip velocity, u0(ri)
the background flow velocity, and

√
2kBT/∆t(M

1/2W )i
the Brownian noise, with kB the Boltzmann constant, T
the temperature, ∆t the time step, W a vector of white
noises, and M1/2 representing the square root of the mo-
bility tensor [59]. Half the blobs along the rod are “pas-
sive” with ũi = 0, while the other half have an active
slip of constant magnitude |ũi| = us parallel to the rod’s
main axis. We can set the active slip at the rear, middle,
or front; See Fig. 3a-c. Here, the background flow is
linear shear: u0(x) = γ̇zx̂.∑
i∈(1,Nb)

λi = F ,
∑

i∈(1,Nb)

(ri − q)× λi = τ , (1)

∑
j∈(1,Nb)

Mijλj = u+ ω × (ri − q)− u0(ri) + ũi+ (2)

√
2kBT/∆t

(
M1/2W

)
i

for i ∈ (1, Nb).

The linear system (1)-(2) can be interpreted as a regu-
larized discretization of a first-kind boundary-integral
equation to solve mobility problems for phoretic parti-
cles in viscous flows [55]. After solving Eqs. (1)-(2), we
update the configuration with a stochastic integrator [60].

Simulation results. The placement of the slip region
proves to be critical for the configuration of the osmotic
flow near the rod. Fig. 2b & c show that asymmetrically
placed slip results in a contractile (or puller) dipolar flow
for front-slip particles, and an extensile (or pusher) dipo-
lar flow for rear-slip particles. The former corresponds
to physical long-gold particles, and the latter to short-
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FIG. 3: The tilt angle α is imposed by the position of high
(red) and low (blue) pressure nodes in the interstitial space
between the rod and the substrate. α decreases as the slip
region (red blobs) is moved from front to aft, from puller (a),
symmetric (b) to pusher (c). (d) Values of α as a function
of the position of the center of the slip layer x0 (with x0 =
+0.5, 0,−0.5 representing front/middle/aft slip) in absence of
shear (•) and a shear γ̇ = 10 s−1 (•).

gold. Placing the slip region in the middle (symmetric
swimmers) – see Fig. 2a – yields a higher-order Stokes
quadrupole flow as its leading order contribution. This
corresponds to a symmetric Au/Pt particle.

In the gap between the rod and the substrate, areas
of high (low) pressure appear where surface velocities,
both from slip and no-slip regions, converge (diverge), see
Fig. 3 a-c. The high pressure node pushes the rod away
from the substrate while the low pressure node pulls it
down. The tilt angle α mechanically results from the po-
sition of the nodes . For a fixed slip coverage moving the
slip/no-slip boundary to the front moves the high pres-
sure region forward and it increases the tilt. Hence front-
actuated rods (i.e. pullers) with larger gold segments as-
sume a larger tilt than symmetric or rear-actuated rods
(i.e. pushers), see Fig. 3d [51].

The fact of a nonzero tilt angle for ellipsoidal swimmers
has been explored most thoroughly by Spagnolie & Lauga
[24]; our results provide a mechanical explanation to the
equilibrium angle attained by these swimmers. Spherical
particles, like squirmers, can show more complex dynam-
ics [61]. For those swimmers the full hydrodynamic trac-
tion, and not just the pressure, have to be used to draw
conclusions about the preferred orientation.

The tilt angle α depends weakly on the shear rate but is
different for puller, pusher and symmetric swimmers (see
Fig. 3d). It is this tilt that allows the microswimmer
to respond to the shear flow near the wall, and is the
origin of rheotaxis. We now probe how changes in the
tilt angle affect the rods dynamics in a linear shear flow.
We first explore the simulations’ predictions to motivate
a yet simpler dynamical model of rheotactic response.

Fig. 4a illustrates the basic rheotactic response
evinced by our microswimmer model for all swimmer
types (pusher, symmetric, puller). Here, Brownian
fluctuations are neglected, and all swimmers are initially
set to swim downstream in a linear shear flow. In
reaction to the background shear each swimmer turns

FIG. 4: (a) Trajectories of deterministic swimmers with ini-
tial orientation θ0 = π/16, seen from above for simulations
(symbols) and theory (dashed lines). (b) Particle velocity
distribution in the flow direction (Vx) for hydrodynamic sim-
ulations with brownian noise in a shear flow with γ̇ = 0 s−1

(•), 4 s−1 (•) and 8 s−1 (•), and weather-vane model (solid
lines).

to swim upstream, with the pusher being the least
responsive. For symmetric swimmers, Fig. 4b shows
the competition between rheotaxis induced by flow with
thermal fluctuations whose effect is to de-correlate the
swimming direction. In the absence of background flow
(γ̇ = 0 s−1), swimmers diffuse isotropically over long
times. This yields a symmetric bimodal distribution
P (Vx) for the x-velocity Vx. As the shear-rate becomes
increasingly positive, the distribution becomes asymmet-
ric and increasingly biased towards upstream swimming
(negative Vx). The distribution curves also shift right,
yielding smaller peak upstream velocities and larger
peak downstream velocities.

A weather-vane model. From these observations
we build an intuitive model displaying a behavior akin to
that of the weather-vane model proposed by Palacci et al.
for slightly asymmetric spheres [46]. Due to its downward
tilt, the shear flow imposes a larger drag on the tail of a
swimming rod. The drag differential promotes upstream
orientation by producing a torque that depends on the
tilt angle α. The rod’s planar position x = (x, y) and
orientation angle θ evolve as:

ẋ = V0n(θ) + γ̇hex +
√

2DtWx, (3)

θ̇ = γ̇ sinα sin θ +
√

2DrWθ. (4)

Eq. (3) describes a swimming rod that moves with in-
trinsic speed V0 at an angle θ [n = (cos(θ), sin(θ))], while
is advected by a shear flow with speed γ̇h at a charac-
teristic height h along the x-axis. Eq. 4 imposes that
the rod angle θ orients against the shear flow. The par-
ticle’s translational and angular diffusion Dt and Dr are
assumed isotropic for simplicity. Wx and Wθ are uncor-
related white noise processes. In the following, all the
parameters in Eqs. (3)-(4) are extracted from hydrody-
namic simulations at zero shear rate.

This model is sufficient to reproduce the determinis-
tic trajectories of symmetric, puller and pusher swim-
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FIG. 5: (a) From experiments: velocity distribution P (Vx) of symmetric swimmers in the absence of background flow (−), with
background flow γ̇ = 8.7 s−1 (−) and for immotile particles in flow γ̇ = 9.5 s−1 (−). Mean velocity vs. shear rates for (b)
symmetric, (c) long-gold puller, and (d) long platinum pusher swimmers respectively in experiments (+) and simulations (◦)
and compared to the reduced model (−). Region of upstream swimming bias is shaded in gray.

mers, and agrees with non-brownian numerical simula-
tions Fig. 4a. The tilt angle α controls how fast a rod
reorients against the flow and it explains why pushers are
less responsive to shear flows. The model also predicts
a critical swimming speed to observe positive rheotaxis
(upstream swimming). As γ̇ → 0, the average velocity
along the flow is 〈Vx〉 = γ̇ (h− V0 sinα/2Dr) which sets
the critical speed V0c = 2Drh/ sinα where the role of the
tilt angle is evident.

From Eqs. (3)-(4) we derive the distribution P (Vx)
of the swimmer velocities down the channel [51], see
Fig. 4b. Although the weather-vane model neglects
hydrodynamics interactions with the substrate, it agrees
with the full numerical simulations for the range of shear
rates and also underlines the influence of the critical
parameters influencing rheotaxis.

Experimental validation of the theory. In exper-
iments the velocity distribution P (Vx) follows the same
phenomenology described for the numerical simulations
and the reduced model; see Fig. 5a. Under weak shear
flow we observe that passive particles (i.e. no H2O2) are
washed downstream whereas all three types of active rods
orient themselves against the flow and swim upstream.

To compare results from different experiments, where
geometrical inhomogeneities in the swimmer population
lead to slight variations in the rod propulsions, we scale γ̇
with the rods swimming speed V0 and diameter d. Note
that the weather-vane model only predicts positive rheo-
taxis for shear rates γ̇ < V0/h ≈ V0/d even in the de-
terministic limit (Dr → 0). As suggested by Fig. 4a,
both experiments and simulations reveal that pushers are
the least robust rheotactors. Upstream swimming bias is
measured by 〈Vx〉 as a function of the shear rate, shown
in Fig. 5b-d.

Upstream rheotaxis is found for moderate shear rates,
γ̇d/V0 < 0.6−0.7, with the characteristic non-monotonic
trends previously described [46, 47]. The swimmers’
ability to move against the flow reaches a maximum at

γ̇d/V0 ∼ 0.4. When the viscous drag overcomes the
propulsive forces, i.e. γ̇d/V0 > 0.7, the rods enter a drift-
ing regime characterized by a rectilinear downstream mo-
tion (〈Vx〉 > 0). For large shear rates the reduced model
predicts a linear average velocity 〈Vx〉 ∼ −V0 + hγ̇. This
feature can be used to sort swimmers by their velocity in
a microfluidic sieve [49, 51, 62]. This trend is consistent
with numerical and experimental results of Fig. 5b-d be-
yond the minimum of 〈Vx〉, though with slightly different
slopes.

Both the symmetric and asymmetric swimmers’
rheotactic behavior agrees with the predictions from
simulations and the model. This result corroborates
the partial slip model used in the numerical model
to describe asymmetric Au/Pt distributions. Qualita-
tively simulations indicate that the maximum velocity
upstream should be larger for puller and symmet-
ric swimmers than for pushers. Experiments found
roughly a factor of two difference between the maximum
upstream velocities between pushers and pullers at
comparable shear values, implying that the reorienting
torque is strongest for pullers. This observation further
agrees with the deterministic trajectories presented in
Fig. 4a. There, the parameter that differentiates those
swimmers’ dynamics is their tilt angle α, identifying
it as a crucial parameter to engineer efficient rheotactors.

Discussion. Through experiment, simulation, and
modeling, we demonstrate how to modify rheotactic re-
sponse by changing swimmer type, which for Au/Pt
Janus rods amounts to changing the location of the
Au/Pt interface. Rheotactic tunability is determined pri-
marily by the tilt angle of the swimmer to the wall, which
is controlled by the distribution of the surface slip. The
quantitative agreement between experiment and simu-
lation demonstrates that we can infer “by proxy” the
pusher and puller nature of artificial microswimmers for
which direct flow visualisation is often difficult to obtain.
Our study extends and elaborates upon the recent re-
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sults of Ren et al. [47] on rheotaxis of symmetric Janus
swimmers.

It is chemical reactions that determine the active sur-
face regions. However, our modeling work here, and that
of others [24], show that swimmer-substrate hydrody-
namic interactions are sufficient to produce a tilt angle
of the rods and thus yield rheotaxis. Our conclusions
should apply to other swimmer types besides phoretic
particles. A careful treatment of the electro-chemical re-
actions could refine the model of the active slip region
used in this work, though solving the electro-chemical
reactions in the presence of thermal fluctuations is far
from trivial [32].

The placement of the slip region opens other routes to
design artificial swimmers that have specific interactions
with obstacles. For example, particles that swim with
their heads up at a wall will tend to move away from
it [24]. To explore this idea we numerically designed
swimmers that will tilt up [51] by placing an active slip
region that covers the nose back to a point forward of the
midpoint. This yields a single high pressure node in the
front half that tilts up the rod. Placing the slip region
on the back half creates a low pressure node on the back
half, yielding the same effect. How to experimentally
produce Au/Pt swimmers with such slip distributions is
an interesting question that we are investigating now.
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[25] A. Zöttl and H. Stark, Phys. Rev. Lett. 108, 218104

(2012).
[26] M. Contino, E. Lushi, I. Tuval, V. Kantsler, and

M. Polin, Phys. Rev. Lett. 115, 258102 (2015).
[27] E. Lushi, V. Kantsler, and R. E. Goldstein, Phys. Rev.

E 96, 023102 (2017).
[28] S. Bianchi, F. Saglimbeni, and R. Di Leonardo, Phys.

Rev. X 7, 011010 (2017).
[29] A. Mathijssen, N. Figueroa-Morales, G. Junot,

E. Clement, A. Lindner, and A. Zoettl, Nature
Communications 10, 3434 (2019).

[30] W. F. Paxton, P. T. Baker, T. R. Kline, Y. Wang, T. E.
Mallouk, and A. Sen, J. Am. Chem. Soc. 128, 14881
(2006).

[31] J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough,
R. Vafabakhsh, and R. Golestanian, Phys. Rev. Lett. 99,
048102 (2007).

[32] J. L. Moran and J. D. Posner, J. Fluid Mech. 680, 31
(2011).

[33] W. Duan, W. Wang, S. Das, V. Yadav, T. E. Mallouk,
and A. Sen, Ann. Rev. of Ana. Chem. 8, 311 (2015).

[34] J. L. Moran and J. D. Posner, Ann. Rev. Fluid Mech.
49, 511 (2017).

[35] D. Takagi, J. Palacci, A. B. Braunschweig, M. J. Shelley,
and J. Zhang, Soft Matt. 10, 1784 (2014).

[36] A. T. Brown, I. D. Vladescu, A. Dawson, T. Vissers,
J. Schwarz-Linek, J. S. Lintuvuori, and W. C. K. Poon,
Soft Matt. 12, 131 (2016).

[37] S. Das, A. Garg, A. I. Campbell, J. Howse, A. Sen,
D. Velegol, R. Golestanian, and S. J. Ebbens, Nat.
Comm. 6, 8999 (2015).

[38] C. Liu, C. Zhou, W. Wang, and H. P. Zhang, Phys. Rev.
Lett. 117, 198001 (2016).

[39] J. Simmchen, J. Katuri, W. E. Uspal, M. N. Popescu,
M. Tasinkevych, and S. Sánchez, Nat. Comm. 7, 10598
(2016).

[40] W. E. Uspal, M. N. Popescu, S. Dietrich, and
M. Tasinkevych, Phys. Rev. Lett. 117, 048002 (2016).

[41] M. S. Davies-Wykes, X. Zhong, J. Tong, T. Adachi,



6

Y. Liu, L. Ristroph, M. D. Ward, M. J. Shelley, and
J. Zhang, Soft Matt. 13, 4681 (2017).

[42] J. Tong and M. Shelley, SIAM Journal on Applied Math-
ematics 78, 2370 (2018).

[43] P. Tierno, R. Golestanian, I. Pagonabarraga, and
F. Sagués, Phys. Rev. Lett. 101, 218304 (2008).

[44] J. Garcia-Torres, C. Calero, F. Sagues, I. Pagonabarra,
and P. Tierno, Nat. Comm. 9, 491 (2018).

[45] W. Uspal, M. N. Popescu, S. Dietrich, and
M. Tasinkevych, Soft Matter 11, 6613 (2015).

[46] J. Palacci, S. Sacanna, A. Abramian, J. Barral, K. Han-
son, A. Y. Grosberg, D. J. Pine, and P. M. Chaikin, Sci.
Adv. 1 (2015).

[47] L. Ren, D. Zhou, Z. Mao, P. Xu, T. J. Huang, and T. E.
Mallouk, ACS Nano 11, 10591 (2017).

[48] S. E. Spagnolie, G. R. Moreno-Flores, D. Bartolo, and
E. Lauga, Soft Matt. 11, 3396 (2015).

[49] M. Potomkin, A. Kaiser, L. Berlyand, and I. Aranson,
New J. Phys. 19, 115005 (2017).

[50] M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg,
and C. A. Mirkin, Nat. Prot. 4, 838 (2009).

[51] Supplemental Material URL to be inserted (2019).
[52] D. Qin, Y. Xia, and G. M. Whitesides, Nat. Prot. 5, 491

(2010).
[53] A. Goldman, R. Cox, and H. Brenner, Chem. Eng. Sci.

22, 637 (1967).
[54] S. Delong, F. Balboa Usabiaga, and A. Donev, J. Chem.

Phys. 143, 144107 (2015).
[55] F. Balboa Usabiaga, B. Kallemov, B. Delmotte, A. P. S.

Bhalla, B. E. Griffith, and A. Donev, Comm. App. Math.
Comp. Sci. 11, 217 (2016).

[56] J. Rotne and S. Prager, J. Chem. Phys. 50, 4831 (1969).
[57] J. R. Blake, Math. Proc. Cam. Phil. Soc. 70, 303 (1971).
[58] J. W. Swan and J. F. Brady, Phys. Fluids 19, 113306

(2007).
[59] T. Ando, E. Chow, Y. Saad, and J. Skolnick, J. Chem.

Phys. 137, 064106 (2012).
[60] B. Sprinkle, F. Balboa Usabiaga, N. A. Patankar, and

A. Donev, J. Chem. Phys. 147, 244103 (2017).
[61] J. S. Lintuvuori, A. T. Brown, K. Stratford, and

D. Marenduzzo, Soft Matter 12, 7959 (2016).
[62] M. Zaferani, G. D. Palermo, and A. Ab-

baspourrad, Science Advances 5 (2019),
http://advances.sciencemag.org/content/5/2/eaav2111.full.pdf,
URL http://advances.sciencemag.org/content/5/2/

eaav2111.

http://advances.sciencemag.org/content/5/2/eaav2111
http://advances.sciencemag.org/content/5/2/eaav2111

	References

