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In this Letter, we exploit recent breakthroughs in monochromated aberration-corrected scan-12

ning transmission electron microscopy (STEM) to resolve infrared plasmonic Fano antiresonances13

in individual nanofabricated disk-rod dimers. Using a combination of electron energy-loss spec-14

troscopy (EELS) and theoretical modeling, we investigate and characterize a subspace of the weak15

coupling regime between quasi-discrete and quasi-continuum localized surface plasmon resonances16

where infrared plasmonic Fano antiresonances appear. This work illustrates the capability of STEM17

instrumentation to experimentally observe nanoscale plasmonic responses that were previously the18

domain only of higher resolution infrared spectroscopies.19
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Since the pioneering work of Ruthemann in 1941 [1], inelastic electron scattering experiments using collimated20

electron beams have made enormous advances in their ability to simultaneously combine and correlate spectroscopic21

information with spatial imaging at the nanoscale. Today, electron energy-loss spectroscopy (EELS) performed in22

a monochromated aberration-corrected scanning transmission electron microscope (MAC STEM) can resolve energy23

losses below 5 meV, with a focused fast electron probe that possesses qualities similar to an ultrafast, near-field, white24

light source and is only a few atoms in diameter [2]. Paired with modern developments in instrumentation, these25

properties of the electron probe have made possible the simultaneous spectroscopy and nanometer-scale imaging of26

optically bright and dark electronic, and even vibrational excitations in nanoparticles [3–13], plasmonic energy and27

charge transfer [14–16], and magneto-optical metamaterials [17–21], heralding a new frontier of materials discovery28

that is inaccessible to far-field optical spectroscopies.29

Despite these advances, the asymmetric Fano lineshape [22], first observed in 1959 in the EEL autoionization30

spectrum of He gas [23, 24], remains elusive in the EELS of plasmonic systems. In his seminal 1961 work [22], Fano31

interpreted the observed lineshapes in terms of a configuration interaction between Helium’s discrete 2s2p double32

electronic excitation and the scattering continuum. In recent years, so-called Fano interferences or antiresonances33

have been observed in a variety of optical [25–31], plasmonic [32–39], and transport [40–42] experiments that involve34

weak coupling between spectrally narrow and broad resonances as generalizations of Fano’s original discrete and35

continuum states. Theory has debated the ability of EELS to capture the Fano antiresonance in plasmonic systems36

[43–45], providing impetus for a careful experimental investigation.37

Motivated by a new generation of STEM monochromators, we construct and measure the spectral response of38

a plasmonic nanostructure that satisfies two critical requirements for the Fano antiresonance: (1) the individual39

plasmonic “configurations” are weakly coupled to each other, and (2) there is roughly a factor of ten or greater between40

the linewidths of each configuration, corresponding to the discrete and continuum channels of Fano’s original analysis.41

These requirements are achieved through the design of a gold disk-rod dimer possessing a series of sharp, experimentally42

resolvable mid-infrared Fano antiresonances arising from the perturbative influence of the rod’s spectrally narrow43

infrared Fabry-Pérot (FP) surface plasmon polariton (SPP) resonances [46–51] upon the comparably broad dipole44

plasmon of the disk. We also present an analytical model that generalizes the Fano lineshape to account for the finite45

linewidth of both broad (quasi-continuum) and narrow (quasi-discrete) modes, as well as the inherently lossy nature46

of the interaction between rod and disk modes through the electromagnetic field. Finally, we apply the model to47

the experimentally measured dimer spectra, showing that it explains the observed features in terms of the incoherent48

interaction between the rod and disk plasmons in rationally-designed dimers of variable disk diameter and rod length.49

Fig. 1a shows a schematic of the coupled disk-rod system studied, designed such that the disk dipole plasmon50

resonance spans a progression of narrow FP rod modes of alternating parity. Tuning the rod length controls the51

number of rod modes that overlap with the disk dipole, while both the rod length and disk diameter together52

determine the degree of spectral overlap between disk and rod modes. Weak coupling is achieved at relatively large53

disk-rod separations (∼ 50 nm edge-to-edge), with the parameters necessary for Fano antiresonances falling into a54

subset of this space where, in addition, there is a factor of ∼ 10 or greater between the disk dipole plasmon and FP55

rod resonance linewidths. Extensive preliminary experimental and theoretical studies were performed to optimize the56
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FIG. 1. (a) Schematic of a gold disk-rod dimer indicating the relevant system parameters and electron-beam location where
spectra are acquired (green ×). (b) Experimental EEL spectrum of a dimer consisting of a 800 nm diameter gold disk and a 5
µm long gold rod separated by a 50 nm gap (green curve). Blue and red curves show the monomer spectra for a near-identical
disk and rod, respectively. The dimer spectrum is not a simple sum of the two monomer spectra, but instead exhibits a narrow
dip at the spectral location of each rod mode. A typical example of the EEL spectrum acquired at the rod end may be found
in the Supplemental Material [52].

plasmon energies and linewidths of the disk and rod monomers such that the disk-rod dimers meet these criteria while57

retaining the smallest detuning possible between the disk dipole and lower-order rod modes.58

The left panel of Fig. 1b shows the point EEL spectrum of a disk-rod dimer measured at a beam location 10 nm59

radially outward from the disk edge (green ×). For comparison, the right panel of Fig. 1b displays the EEL spectra60

for an isolated disk (blue curve) and rod (red curve) of the same size as in the dimer, collected at beam locations61

indicated by the blue and red ×. The disk monomer spectrum (Fig. 1b) reveals a broad resonance around 500 meV62

attributed to the dipolar disk mode, while the rod monomer spectrum shows a succession of spectrally narrow FP63

SPP resonances beginning around 200 meV. As anticipated, the spectrum of the coupled system collected on the disk64

end is not a simple sum of the two monomer spectra, but instead follows the Lorentzian-like “envelope” of the isolated65

disk dipole peak with narrow asymmetric dips at the spectral location of each rod mode (dotted lines), indicative of66

weak coupling.67

Analysis and interpretation of measured EEL spectra is facilitated by analytical modeling of the disk-rod dimer.68
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Considering only the interaction between a single FP mode of the rod with the dipole plasmon of the disk, the surface69

plasmon resonance solutions of Maxwell’s equations can be mapped onto the following set of coupled harmonic70

oscillators [10, 19],71

p̈0 + γnrṗ0 −
2e2

3m0c3
...
p 0 + ω2

0p0 −
√
m1

m0

∫ t

−∞
dt′g(t− t′)p1(t′) =

e2

m0
Ex

el(0, t)

p̈1 + γnrṗ1 + γradṗ1 + ω2
1p1 −

√
m0

m1

∫ t

−∞
dt′g(t− t′)p0(t′) = 0.

(1)

Here pi labels the x-oriented surface plasmons of the disk (i = 0) and rod (i = 1) of natural frequency ωi, nonradiative72

dissipation rate γnr, and effective mass mi [10, 19]. Radiation-reaction forces have been included to account for73

radiative losses by the system, which in the frequency domain can be repackaged into the total dissipation rates74

γ0(ω) = γnr + 2e2ω2/3m0c
3 for the disk dipole mode [53] and γ1 = γnr + γrad for the rod mode; here γrad has been75

used in place of the frequency-dependent Larmor rate due to the non-dipolar nature of the rod modes, which are76

sufficiently spectrally narrow such that γrad is well-approximated as frequency-independent.77

The disk dipole plasmon is driven by the electric field Eel(x, t) = −e(x −R0 − vt)/γ2L[(z − vt)2 + (R/γL)2]3/2 of78

the fast electron moving uniformly with velocity v = êzv evaluated at the center of the disk, taken to be the origin.79

Here γL = [1− (v/c)2]−1/2 is the Lorentz contraction factor, R0 = −êxR0 the electron beam position (Fig. 1a green80

×), and R =
√

(x+R0)2 + y2 is the lateral distance between electron probe and field observation point in the impact81

plane (z = 0). Due to the relatively large disks studied (& 650 nm in diameter), the rod modes are not directly driven82

by the evanescent field of the electron when the electron probe is positioned at the disk end of the dimer. No EEL83

signal is observable above the background when the disk is removed, illustrating the disk’s role as an antenna that84

transfers energy from the electron probe to the rod.85

The coupling strength between the disk and rod plasmon modes depends upon the relative separation and orientation86

of the disk and rod as well as their respective polarizabilities. In the frequency domain, the coupling is characterized87

by the complex parameter g(ω), arising from the interaction energy Uint = −E1 ·p0, where E1 is the induced electric88

field of the rod mode evaluated at the disk dipole center. The real part of g(ω) defines the rate of energy transfer89

between the disk and rod plasmon modes, while the imaginary part accounts for the lossy nature of this interaction90

and is related to the degree of interference between the fields of the coupled modes [52]. Because the rod modes are91

spectrally narrow, the real part of the coupling strength g(ω) may be treated as approximately frequency-independent.92

Likewise, the imaginary part is taken to be linear in ω as g(ω) is purely real for static fields (i.e., ω = 0) and therefore93

does not have a frequency-independent contribution. Lastly, only the coupled plasmon dynamics oriented parallel to94

the rod’s long axis need be considered due to the high aspect ratio of the rod, justifying the use of the quasi-one95

dimensional dynamical equations in Eq. (1) with all other collective electronic motion occurring at much higher96

energy.97

The EEL probability P (ω) per unit frequency ω of transferred quanta between electron beam and target is obtained98
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by computing the work done on the electron probe by the field induced in the polarized target [54],99

P (ω) =
|Ẽx

el(0, ω)|2

π~
Im

[
e2

m0

(
ω2
0 − ω2 − iωγ0 −

g2

ω2
1 − ω2 − iωγ1

)−1]
, (2)

while the EEL probability for the isolated disk P0(ω) is obtained from the above expression by taking g = 0. The100

ratio between P (ω) and P0(ω) at the same beam position R0 can be cast into the reduced form101

P (ω)

P0(ω)
=

(
1 + Im

[
g2/ωγ0

ω2
1 − ω2 − iωγ1

]) ∣∣∣q + ε

ε+ i

∣∣∣2 (3)

which generalizes Fano’s original lineshape to account for dissipation in both broad and narrow plasmon resonances as102

well as complex coupling. Here q(ω) = (Ω2(ω)−ω2
1 +iωγ1(ω))/ωΓ(ω) and ε(ω) = (ω2−Ω2(ω))/ωΓ(ω) are respectively103

the complex-valued asymmetry function and reduced frequency expressed in terms of the modified frequency Ω2(ω) =104

ω2
1 − Re[g2(ω2

0 − ω2 − iωγ0)−1] and linewidth Γ(ω) = γ1(ω) + (1/ω)Im[g2(ω2
0 − ω2 − iωγ0)−1] of the spectral feature105

described by the interaction of disk dipole and rod plasmon modes. For true Fano antiresonances, the function106

q(ω) ≈ q(ω1) is approximately constant and represents the asymmetry parameter originally proposed by Fano to107

distill the physics of the antiresonance into a single number that depends upon the basic system parameters [22].108

Here, since both disk and rod modes are dissipative, the asymmetry parameter generalizes to a complex-valued109

number, the real part of which characterizes the degree of asymmetry of the antiresonance. It is important to note110

that without the second term proportional to γ1, q(ω) would be real-valued and the reduced EEL probability spectrum111

(Eq. (3)) would vanish whenever ε(ω) = −q(ω) [27]. However, this is not observed experimentally at any coupling112

strength due to the finite linewidth of the spectrally narrow rod resonances. Lastly, the standard form of the Fano113

lineshape is scaled by a frequency-dependent prefactor which accounts for the additional non-disk dissipation channels114

of the dimer.115

Since each rod has multiple plasmon modes that spectrally overlap the disk dipole plasmon resonance, the EEL116

probability is further generalized as117

P (ω) =
|Ẽx

el(0, ω)|2

π~
Im
[(
ω2
0 − ω2 − iωγ0 −

∑
j

g2j
ω2
j − ω2 − iωγj

)−1]
(4)

and the reduced EEL probability may be cast into the approximate form,118

P (ω)

P0(ω)
≈ F1

(
q1(ω), ε1(ω)

)
F2

(
q2(ω), ε2(ω)

)
· · · FN

(
qN (ω), εN (ω)

)
, (5)

where Fj(qj(ω), εj(ω)) is the Fano lineshape describing the interaction between the jth rod plasmon mode and the119

disk dipole plasmon mode (labeled by the subscript 0) given by Eq. (3). This product factorization of the reduced120

spectrum, which allows for an estimate of the asymmetry function qj(ω) for each individual rod plasmon mode, is121

approximate as the rod resonances overlap weakly, causing their individual contribution to the dimer spectrum to122

depend upon neighboring rod modes through their mutual interaction with the disk dipole plasmon. Nonetheless, the123
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exact form of the reduced EEL spectrum inferred from Eq. (4) can be used to demonstrate the accuracy of the simple124

product form in the weak coupling regime when all rod modes are well-separated spectrally [52]. Lastly, while the125

model parameters (including gj) could be obtained by approximating the disk and rod by oblate and prolate spheroids126

and adding the contributions from radiation damping, doing so adds little additional insight into the measurements;127

thus we obtain these parameters by numerically fitting the experimental spectra.128

Measured EEL spectra are collected at R0 for a set of fabricated gold disk-rod dimers of varying rod length and129

disk diameter. All system parameters (ω0, m0, ωj , γj , and gj) are obtained for each dimer by least-squares fitting130

the analytic form for P (ω) defined by Eq. (4) to the spectra. The nonradiative (Drude) dissipation rate of the disk131

dipole is set prior to fitting according to the value for gold at optical frequencies (~γAu = 69 meV [55]). Initial132

guesses for the natural frequency ω0 and effective mass m0 of the disk plasmon are estimated for each dimer by133

fitting the measured EEL spectra collected at R0 of an isolated disk, while initial guesses for ωj and γj of the N134

rod plasmons are estimated from the EEL spectra of an isolated rod. To check the fitting procedure, the parameters135

obtained from each dimer spectrum are used to reconstruct the disk monomer spectrum P0(ω), rod monomer spectrum136

Prod(ω) =
∑

j Pj(ω) (where Pj(ω) is identical in form to P0(ω) with indices interchanged where appropriate), and137

the reduced EEL probability spectrum P (ω)/P0(ω) for each structure. We note that, while any spectrum can be fit138

by an arbitrary collection of oscillators, the approach here is restricted by the number of oscillators present in the139

monomer spectra.140

Fig. 2 shows the result of this analysis for another dimer. The point EEL spectrum, collected at an equivalent141

beam position to that in Fig. 1b, is shown in the upper panel of Fig. 2a (green bullets) with the fit to Eq. (4)142

overlaid (black curve). The bottom panel of Fig. 2a compares the experimental EEL spectra obtained from a143

650 nm disk monomer (blue bullets) and a 5 µm rod monomer (red bullets) to the theoretical monomer spectra144

reconstructed from parameters obtained from fitting the dimer spectrum (black curve). Due to small geometrical145

variations between the isolated monomer rods and disks versus those which compose the dimers, the monomer spectra146

will not, in general, exactly match those corresponding to the dimer disk and rod. In addition, deviation between147

the reconstructed and experimental disk monomer spectra is expected on the higher-energy side of the disk dipole148

peak where the quadrupole plays a non-negligible dynamical role. Despite these limitations, Fig. 2a shows excellent149

agreement between reconstructed and experimental spectra, which further validates our ability to extract the monomer150

parameters from the dimer spectra. To compare with our theoretical analysis, Fig. 2b displays the reduced EEL151

probability (green bullets) obtained by dividing the experimental spectrum by the theoretically reconstructed isolated152

disk spectrum P0(ω) (top), along with the decomposition into a progression of individual Fano lineshapes Fj(qj , εj)153

(bottom).154

This analysis is repeated for a set of four unique disk-rod combinations [52] and summarized in Fig. 3 to illustrate155

the variation in coupling strength and relative linewidth as a function of disk and rod size. Underlying each data point156

is a particular rod FP mode (labeled j) which interacts with the disk dipole plasmon (labeled 0). As previous, all157

point EEL spectra are collected 10 nm radially outward along the rod long axis from the disk edge (Fig. 1b, green ×).158

As each dimer contains multiple overlapping disk and rod modes, these four structures generate 12 modes available159

for analysis. For all dimers, the lowest and highest energy rod resonances are not included as explicit data points due160
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FIG. 2. EEL point spectrum of a gold disk-rod dimer composed of a 650 nm diameter disk and a 5 µm rod separated by a 50
nm gap. The spectrum exhibits a progression of infrared Fano antiresonances due to the interaction between the broad disk
dipole plasmon resonance and the spectrally narrow plasmon modes of the rod. The upper panels display the (a) experimental
(green) and fit (black) EEL spectrum and (b) reduced EEL spectrum of the dimer collected at the disk end. The lower panel
of (a) shows the experimental monomer spectra of an isolated disk (blue) and rod (red). As an independent check of the fitting
procedure, the theoretical monomer spectra are reconstructed from the dimer fit parameters (black curves), showing excellent
agreement. The lower panel of (b) displays the decomposition of each antiresonance in the reduced spectrum into a product of
Fano lineshapes Fj(qj , εj) as described in Eq. (5) with the corresponding value of the real part of the asymmetry parameter
qr,j = Re qj(ωj) indicated above each feature.

to uncertainties imposed by subtraction of the zero-loss peak and interactions with the SiO2 substrate phonon mode161

at lower energies (. 200 meV) and the influence of the disk quadrupole at higher energies (& 650 meV). The full162

spectra, however, are displayed in the Supplemental Material [52].163

All disk-rod mode pairs are found to be in the weak coupling regime as each data point satisfies the inequality164

Re gj/γ0(ωj)
√
ω0ωj < 1 [56, 57]. Additionally, multiple disk-rod mode pairs are found to obey the linewidth condition165

γj ∼ γ0/10 (Fig. 3 red region), including those highlighted in Fig. 2, thus satisfying both requirements for the166

emergence of Fano antiresonances in the coupled spectrum. Additionally, these results indicate that the size of both167

the rod and disk play a crucial role in determining whether the disparity in linewidths between the disk and rod modes168

is sufficient to observe a sharp antiresonance. We find that the longer 5 µm rods (R2) in combination with the 650 nm169

diameter disk (D1) optimally balance the two criteria for sharp Fano antiresonances, while supporting a progression170

of rod modes which are minimally detuned from the disk dipole such that disk-rod interaction is non-negligible.171
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FIG. 3. Graphical summary of the interaction between individual rod resonances and the disk dipole plasmon in a collection
of disk-rod dimers. Each mode pair is represented by a distinct symbol and is characterized by its relative coupling strength
Re gj/γ0(ωj)

√
ω0ωj and dissipation rate γj/γ0(ωj). Dimers denoted by R1 (R2) consist of 2.5 µm (5 µm) long rods, while those

denoted by D1 (D2) consist of 650 (800 nm) diameter disks. In all dimers, the disk and rod are separated by a gap of 50 nm
and since Re gj/γ0(ωj)

√
ω0ωj = 1 denotes the boundary between weak and strong coupling, all dimers are in the weak coupling

regime. The gray triangle symbols indicate specific Fano antiresonances shown explicitly in Fig. 2.

In conclusion, we resolve for the first time Fano antiresonances in the EEL spectrum of a plasmonic nanostructure.172

This is achieved by rationally designing a gold disk-rod dimer supporting rod resonances that are spectrally narrow173

relative to the disk dipole. Observation of the asymmetric lineshapes is facilitated by a new generation of monochro-174

mated and aberration-corrected STEMs which open the infrared spectral region to interrogation. We develop a175

theoretical model which generalizes the original Fano lineshape to account for dissipation in both the quasi-discrete176

and the quasi-continuum channels in STEM-EELS. This analysis makes explicit the classification of the observed177

dimer lineshapes in terms of the asymmetry parameter q, as discovered in the autoionization spectrum of He by178

Fano in 1961 [22]. This combined experimental and theoretical work not only resolves an ongoing discussion in the179

literature about the existence of Fano lineshapes in the EELS of plasmonic systems [43–45], but also showcases the180

ability of the latest generation of monochromated STEMs to observe spectrally narrow plasmonic responses that were181

previously the domain only of higher resolution optical spectroscopies.182
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