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We formulate the Kohn-Sham equations for the fractional quantum Hall effect by mapping the
original electron problem into an auxiliary problem of composite fermions that experience a density
dependent effective magnetic field. Self-consistent solutions of the KS equations demonstrate that
our formulation captures not only configurations with non-uniform densities but also topological
properties such as fractional charge and fractional braid statistics for the quasiparticles excitations.
This method should enable a realistic modeling of the edge structure, the effect of disorder, spin
physics, screening, and of fractional quantum Hall effect in mesoscopic devices.

The Kohn-Sham density functional theory (KS-DFT)
uses the electron density to construct a single particle
formalism that incorporates the complex effects of many-
particle interactions through a universal exchange corre-
lation functional [1]. It is an invaluable tool for treat-
ing systems of interacting electrons spanning the disci-
plines of physics, chemistry, materials science and biol-
ogy. Very little work has been done [2–4] toward apply-
ing this method to the FQHE [5], which is one of the
most remarkable manifestations of interelectron interac-
tions [6, 7]. The reasons are evident. To begin with, even
though the KS-DFT is in principle exact, its accuracy,
in practice, is dictacted by the availability of exchange
correlation (xc) potentials, and it works best when the
xc contribution is small compared to the kinetic energy.
In the FQHE problem, the kinetic energy is altogether
absent (at least in the convenient limit of very high mag-
netic fields) and the physics is governed entirely by the xc
energy. A more fundamental impediment is that, by con-
struction, the KS-DFT eventually obtains a single Slater
determinant solution, whereas the ground state for the
FQHE problem is an extremely complex, filling factor-
dependent wave function that is not adiabatically con-
nected to a single Slater determinant. In particular, a
mapping into a problem of non-interacting electrons in
a KS potential will produce a ground state that locally
has integer fillings, whereas nature displays preference for
certain fractional fillings. Finally, a mapping into a sys-
tem of weakly interacting electrons will also fail to cap-
ture topological features of the FQHE, such as fractional
charge and fractional braid statistics for the quasiparti-
cles [6, 8, 9]. At a fundamental level, these difficulties
can be traced back to the fact that the space of ground
states in the lowest Landau level (LLL) is highly degen-
erate for non-interacting electrons, and the interaction
causes a non-perturbative reorganization to produce the
FQHE. We note here that the application of KS-DFT
to “strictly correlated electrons” is in general an impor-
tant problem and has previously been considered in other
contexts [10–13].

To make progress, we exploit the fact that the strongly
interacting electrons in the FQHE regime turn into
weakly interacting composite fermions, namely bound
states of electrons and an even number (2p) of quantum
vortices [7, 14]. This suggests using an auxiliary sys-

tem of non-interacting composite fermions to construct
a KS-DFT formulation of the FQHE, which is the ap-
proach we follow in this work. A crucial aspect of our
KS Theory is that it properly incorporates the physics
of the long range “gauge interaction” between composite
fermions induced by the Berry phases due to the quantum
mechanical vortices attached to them, which is responsi-
ble for the topological properties of the FQHE, such as
fractional charge and statistics [7, 15, 16]. That effec-
tively amounts to using a non-local exchange-correlation
potential. Earlier DFT formulations of the FQHE [2–4]
employ a local exchange-correlation potential and thus
do not capture the topological features of the FQHE.

We consider the Hamiltonian for fully spin polarized
electrons confined to the LLL:

H = Ĥee +

∫
drVext(r)ρ̂(r) (1)

Within the so-called magnetic-field DFT [17–20], the
Hohenberg-Kohn (HK) theorem also applies to interact-
ing electrons in the FQHE regime and implies that the
ground state density and energy can be obtained by min-
imizing the energy functional

E[ρ] = F [ρ] +

∫
drVext(r)ρ(r), (2)

where the HK functional is given by [21, 22]

F [ρ] = min
ΨLLL→ρ(r)

〈ΨLLL|Ĥee|ΨLLL〉 ≡ Exc[ρ] + EH[ρ].

(3)
(The B dependence of the energy functional has been
suppressed for notational convenience). Here Exc[ρ] and
EH[ρ] are the xc and Hartree energy functionals of elec-
trons and ΨLLL represents a LLL wave function. The
conventional KS mapping into non-interacting electrons
is problematic due to the absence of kinetic energy.

We instead map the FQHE into the auxiliary prob-
lem of “non-interacting” composite fermions. Compos-
ite fermions’ most fundamental property is that they
experience an effective magnetic field. In particular,
the integer quantum Hall effect of composite fermions
at ν∗ = n manifests as the FQHE of electrons at
ν = n/(2pn± 1). (The quantities referring to composite
fermions are marked by an asterisk below.) Even though
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we use the term non-interacting, the Berry phases asso-
ciated with the bound vortices induce a long range gauge
interaction between composite fermions, as a result of
which they experience a density dependent magnetic field
B∗(r) = B − 2ρ(r)φ0, where φ0 = hc/e is a flux quan-
tum. We therefore write[

1

2m∗

(
p +

e

c
A∗(r ; [ρ])

)2

+ V ∗KS(r)

]
ψα(r) = εαψα(r),

(4)
where V ∗KS(r) is the KS potential for composite fermions,
m∗ is the composite-fermion (CF) mass, and ∇ ×
A∗(r ; [ρ]) = B∗(r). As a result of the gauge interac-
tion, the solution for any given orbital depends, through
the ρ(r) dependence of the vector potential, on the oc-
cupation of all other orbitals. Eq. 4 must therefore be
solved self-consistently, i.e., the single-CF orbitals ψα(r)
must satisfy the condition that the ground state density
ρ(r) =

∑
α cα|ψα(r)|2, where cα = 1 (0) for the low-

est energy occupied (higher energy unoccupied) single-
CF orbitals, is equal to the density that appears in the
kinetic energy of the Hamiltonian. The energy levels of
Eq. 4 are Landau-like levels of composite fermions, called
Λ levels (ΛLs). For the special case of a spatially uniform
density and constant V ∗KS, Eq. 4 reduces to the prob-
lem of non-interacting particles in a uniform B∗. Impor-
tantly, once a self-consistent solution is found for a given
V ∗KS(r), for the corresponding density in the Hamiltonian
in Eq. 4, the ground state satisfies, by definition, the self-
consistency condition and also the variational theorem,
and the standard proof for the HK theorem follows. See
Supplementary Materials (SM) [23] for details. We define
the CF kinetic energy functional as

T ∗s [ρ] = min
Ψ→ρ
〈Ψ| 1

2m∗

N∑
j=1

(
pj +

e

c
A∗(r j ; [ρ])

)2

|Ψ〉 (5)

where we perform a constrained search over all single
Slater determinant wave functions Ψ that correspond to
the density ρ(r), following the strategy of the generalized
KS scheme [23, 24].

The next key step is to write Exc[ρ] = T ∗s [ρ] + E∗xc[ρ],
or F [ρ] = T ∗s [ρ] + EH[ρ] + E∗xc[ρ]. (Note that T ∗s [ρ] and
thus Exc[ρ] is a non-local functional of the density.) Such
a partitioning of F [ρ] can, in principle, always be made
given our assumptions, but is practically useful only if
the T ∗s [ρ] and EH[ρ] capture the significant part of F [ρ],
and the remainder E∗xc[ρ], called the exchange-correlation
energy of composite fermions, makes a relatively small
contribution. This appears plausible given that the CF
kinetic energy term captures the topological aspects of
the FQHE, and also because the model of weakly inter-
acting composite fermions has been known to be rather
successful in describing a large class of experiments.

Minimization of the energy E[ρ] = T ∗s [ρ] +
EH[ρ] + E∗xc[ρ] +

∫
drVext(r)ρ(r) with respect to

ρ(r) =
∑
α cα|ψα(r)|2, subject to the constraint

∫
drψ∗α(r)ψβ(r) = δαβ , yields [23] Eq. 4 with

V ∗KS[ρ, {ψα}] = VH(r) + V ∗xc(r) + Vext(r) + V ∗T(r), (6)

where VH(r) = δEH/δρ(r) and V ∗xc(r) = δE∗xc/δρ(r) are
the Hartree and CF-xc potentials. The non-standard po-
tential

V ∗T(r) =
∑
α

cα〈ψα|
δT ∗

δρ(r)
|ψα〉 (7)

with T ∗ = 1
2m∗

(
p + e

cA
∗(r ; [ρ])

)2
arises due to the

density-dependence of the CF kinetic energy. V ∗T de-
scribes the change in T ∗s to a local disturbance in density
for a fixed choice of the KS orbitals. Eqs. 4-7 define our
KS equations. Because V ∗T(r) depends not only on the
density but also on the occupied orbitals, we are actually
working with what is known as the “orbital dependent
DFT” [25].

Having formulated the CF-DFT equations, we now
proceed to obtain solutions for some representative cases.
The primary advantage of our approach is evident with-
out any calculations. Take the example of a uniform
density FQHE state at ν = n/(2pn ± 1). It is an enor-
mously complicated state in terms of electrons, but maps
into the CF state at filling factor ν∗ = n with a spa-
tially uniform magnetic field, thereby producing the cor-
rect density without any fine tuning of parameters or
averaging. For non-uniform densities, the state of non-
interacting composite fermions will produce configura-
tions where composite fermions locally have ν∗ ≈ n,
which corresponds to an electronic state where the lo-
cal filling factor is ν ≈ n/(2pn±1), which is a reasonable
description, and certainly a far superior representation of
the reality than any state of non-interacting electrons.

For a more quantitative treatment we need a model
for the xc energy. To this end, we begin by mak-
ing the local density approximation (LDA) to write
E∗xc[ρ] =

∫
drε∗xc[ρ(r)]ρ(r), where ε∗xc[ρ] is the xc en-

ergy per CF. In the following, we express all lengths in
units of the magnetic length lB =

√
~c/eB and ener-

gies in units of e2/εlB , where ε is the dielectric constant
of the background. The density is related to the local
filling factor as ν(r) = ρ(r)2πl2B . We take the model
ε∗xc[ρ] = aν1/2 + (b − f/2)ν + g, with a = −0.78213,
b = 0.2774, f = 0.33, g = −0.04981. The form is cho-
sen so that the sum of ε∗xc and CF kinetic energy ac-
curately reproduces the known electronic xc energies at
ν = n/(2n+ 1) [23]. (The term aν1/2 is chosen to match
with the known classical value of energy of the Wigner
crystal in the limit ν → 0 [26].) Although optimized for
ν = n/(2n + 1), we will uncritically assume this form
of ε∗xc(ν) for all ν. Our aim in this work is to estab-
lish the proof-of-principle validity and the applicability
of our approach and its ability to capture topological
features; a more extensive search for the most optimal
E∗xc is left for future work. The topological properties we
focus on in this paper are largely robust against the pre-
cise form of the xc energy. The xc potential is given by
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FIG. 1. Density profile for 1/3 droplets. This figure shows
the density of a system of N composite fermions. ρ0 is the
density for Laughlin’s 1/3 wave function [6], and ρED is ob-
tained from exact diagonalization (ED) of the Coulomb inter-
action at total angular momentum Ltotal = 3N(N−1)/2 [27].
The density ρDFT is calculated from the solution of the KS
equations for composite fermions in an external potential pro-
duced by a uniform positively charged disk of radius R so that
πR2ρb = N . The total angular momentum of the CF state is
L∗tot, which is related to the total angular momentum of the
electron state by Ltot = L∗tot +N(N − 1) [28]. The CF-DFT
solution produces L∗tot = N(N − 1)/2, which is consistent
with Ltot = 3N(N − 1)/2. All densities are quoted in units
of (2πl2B)−1, the density at ν = 1. We take ρb = 1/3.

V ∗xc = δE∗xc/δρ(r) = 3
2aν

1/2 +(2b−f)ν+g. We note that
while the CF xc potential V ∗xc is a continuous functions of
density, the electron xc potential V ∗xc has derivative dis-
continuities at ν = n/(2n ± 1), arising from the kinetic
energy of the composite fermions [23].

In our applications below, we will consider N electrons

in a potential Vext(r) = −
∫
d2r ′ ρb(r ′)√

|r−r ′|2+d2
generated

by a two-dimensional uniform background charge den-
sity ρb = ν0/2πl

2
B distributed on a disk of radius Rb

satisfying πR2
bρb = N at a separation of d from the

plane of the electron liquid. This produces an electron
system at filling factor ν = ν0 in the interior of the
disk. We use ν0 = 1/3 and d/lB → 0 in our calcula-
tions below. For the vector potential, we assume circular

symmetry and choose the gauge A∗(r) = rB(r)
2 eφ, with

B(r) = 1
πr2

∫ r
0

2πr′B∗(r′)dr′.

We obtain self-consistent solutions of Eqs. 4-7 by an it-
erative process. Even though we are interested in the zero
temperature limit in this article, we sometimes find it
useful to begin with a finite temperature kBT ∼ 0.1, and
anneal the system to approach successively lower tem-
peratures [23, 29].

As a first application, we consider the density profile
of the ν0 = 1/3 droplet. Fig. 1 shows the density profiles
calculated from Laughlin’s trial wave function [6] as well
as that obtained from exact diagonalization at total an-
gular momentum L = 3N(N − 1)/2 [27]. Also shown are
the density profiles obtained from the above KS equa-
tions. The density profile from our CF-DFT captures

FIG. 2. Screening and fractional charge. This figure shows
how the 1/3 state screens a charged impurity of strength
Q = ±e located at a perpendicular distance h from the origin.
The panels (a)-(e) and (k)-(o) show the self-consistent den-
sity ρDFT(r). Also shown are ρ0DFT(r), the “unperturbed”
density (for Q = 0), and ρb, which is the density of the posi-
tively charged background. Panels (f-j) show the occupation
of renormalized ΛLs in the vicinity of the origin; each compos-
ite fermion is depicted as an electron with two arrows, which
represent quantized vortices. (The single particle angular mo-
mentum is given by m = −n,−n+ 1, · · · in the nth ΛL.) The
panel (p) shows the evolution of the excess charge δq and the
total CF angular momentum L∗tot as a function of the impurity
potential strength at the origin Vimp(r = 0) = Q/h. Change
in the charge at the origin is associated with a change in L∗tot.
The system contains a total of N = 50 composite fermions.
For h =∞, we have L∗tot = 1225 and δq = 0. For one and two
quasiholes, we have L∗tot = 1225 and 1275, whereas for one,
two and three quasiparticles we have L∗tot = 1175, 1127 and
1078, precisely as expected from the configurations in panels
(f)-(j) [28].

that obtained in exact diagonalization well, especially for
N ≥ 10. Remarkably, it reproduces the characteristic
shape near the edge where the density exhibits oscilla-
tions and overshoots the bulk value before descending to
zero. This qualitative behavior is fairly insensitive to the
choice of V ∗xc, and is largely a result of the self-consistency
requirement in Eq. 4 [23]. The SI considers other config-
urations, and also shows that a mean-field approximation
without self-consistency is highly unsatisfactory for the
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density profile.
We next consider screening of an impurity with charge

Q = ±e at a height h directly above the center of the
FQHE droplet. The strength of its potential

Vimp(r) =
Q√

|r |2 + h2
(8)

can be tuned by varying h. Panels (a)-(e) in Fig. 2 show
the density ρ for certain representative values of h. It
is important to note that the CF orbitals in the self-
consistent solution form strongly renormalized ΛLs (i.e.
include the effect of mixing between the unperturbed
ΛLs). Panels (f)-(j) show the occupation of the ΛLs. The
presence of the impurity either empties some CF orbitals
from the lowest ΛL or fills those in higher ΛLs. Each
empty orbital in the lowest ΛL corresponds to a charge
1/3 quasihole, whereas each filled orbital in an excited
ΛL to a charge −1/3 quasiparticle [7]. The excess charge
is defined as δq =

∫
|r|<r0 d

2r [ρ0− ρ(r)] in a circular area

of radius r0 = 10lB around the origin. Panel (p) shows
how δq and L∗tot change as a function of the impurity
potential at the origin Vimp(r = 0) = −Q/h. The excess
charge δq is seen to be quantized at an integer multiple
of ±1/3.

We finally come to fractional braid statistics. Parti-
cles obeying such statistics, called anyons, are character-
ized by the property that the phase associated with a
closed loop of a particle depends on whether the loop en-
closes other particles. In particular, for abelian anyons,
each enclosed particle contributes a phase factor of ei2πα,
where α is called the statistics parameter. [For non-
interacting bosons (fermions), α is an even (odd) inte-
ger.] In the FQHE, the quasiparticles are excited com-
posite fermions and quasiholes are “missing” composite
fermions. Let us consider quasiholes of the 1/3 state for
illustration. A convenient way to ascertain the statis-
tics parameter within our KS-DFT is to ask how the
location of a quasihole in angular momentum m orbital
changes when another quasihole is inserted at the origin
in the m = 0 orbital. Let us first recall what is the ex-
pected behavior arising from fractional braid statistics.
In an effective description, the wave function of a sin-
gle quasihole in angular momentum m orbital is given
by zme−|z|

2/4l∗2 (z ≡ x − iy), which is maximally local-
ized at rex = (2m)1/2l∗ = (6m)1/2lB , with l∗ =

√
3lB

(as appropriate for ν0 = 1/3). When another quasi-
hole is present at the origin, it induces an additional
statistical phase factor ei2πα, where α is the statistics
parameter. This changes the wave function of the outer
quasihole to zm−αe−|z|

2/4l∗2 , which is now localized at
r′ex = [6(m − α)]1/2lB . We now determine α from our
KS-DFT formalism.

A quasihole can be treated in a constrained DFT [30]
wherein we leave a certain angular momentum orbital un-
occupied. The panels (a) and (b) of Fig. 3 show the self-
consistent KS density profiles of the state with a quasi-
hole in angular momentum m, without and with another

FIG. 3. Fractional braid statistics. Panel (a) shows the elec-
tron density for a system with a quasihole in angular mo-
mentum m orbital, with m changing from 1 to 20 for the
curves from the bottom to the top. (Each successive curve
has been shifted up vertically for clarity.) Panel (b) shows
the same in the presence of another quasihole at the origin.
For each m, we indicate the expected position of the outer
quasihole (red cross) as well as the position obtained from
the DFT density determined by locating the local minimum
(blue circle). Panel (c) shows the calculated statistics pa-
rameter α ≡ (r2DFT − r′2DFT)/6l2B . The calculation has been
performed for N = 200 composite fermions at ν0 = 1/3.

quasihole in the m = 0 orbital. The locations of the
outer quasihole, rDFT and r′DFT, are determined from the
minimum in the density. These are in reasonable agree-
ment with the expected positions rex and r′ex (provided
m > 3). More importantly, the calculated statistics pa-
rameter α ≡ (r2

DFT−r′2DFT)/6l2B is in excellent agreement
with the expected fractional value of α = 2/3 [7, 8] pro-
vided that the two quasiparticles are not close to one
another, indicating that our method properly captures
the physics of fractional braid statistics. The small de-
viation from 2/3 for large m arises from the fact that
the density of the unperturbed system itself has slight
oscillations due to the finite system size, which causes a
slight shift in the position of the local minimum due to
an additional quasihole. Correcting for that effect pro-
duces a value much closer to α = 2/3, as illustrated in
the SM [23].

In conclusion, we have formulated in this article a
Kohn-Sham DFT that faithfully captures the topologi-
cal characteristics of the FQHE state, such as fractional
charge, fractional statistics and effective magnetic field.
This opens a new strategy for exploring a variety of prob-
lems of interest. Aside from the nature of FQHE edges,
our approach should allow a quantitative treatment of
the effect of smooth disorder, as well as of correction due
to Landau level mixing and finite width through appro-
priate modifications of the xc potential. One can an-
ticipate a generalization of the KS-DFT to paired CF
states supporting non-Abelian excitations. Modeling of
mesoscopic devices should provide important insight into
the optimal conditions for the measurement of fractional
statistics through interference experiments (e.g. Ref. 31).



5

Acknowledgement : We are grateful to Gerald Knizia,
Andre Laestadius, Paul Lammert, Melvyn Levy, and Erik
Tellgren for very useful discussions and advice. We ac-
knowledge financial support from the US Department of
Energy under Grant No. DE-SC0005042. Y. H. thanks
Yang Ge and PSU DFT Cafe for illuminating help, and
acknowledges partial financial support from China Schol-
arship Council. Some of the numerical calculations were
performed using the DiagHam package, for which we are
grateful to its authors. The numerical calculations were
performed using Advanced CyberInfrastructure compu-
tational resources provided by The Institute for Cyber-
Science at The Pennsylvania State University. We thank
the the Indian Institute Science, Bangalore, where part
of this work was performed, for their hospitality, and the
Infosys Foundation for making the visit possible.

[1] G. Giuliani and G. Vignale,
Quantum Theory of the Electron Liquid (Cambridge
University Press, The Edinburgh Building, Cambridge
CB2 2RU, UK, 2008).

[2] M. Ferconi, M. R. Geller, and G. Vignale, Phys. Rev. B
52, 16357 (1995), URL http://link.aps.org/doi/10.

1103/PhysRevB.52.16357.
[3] O. Heinonen, M. I. Lubin, and M. D. Johnson, Phys. Rev.

Lett. 75, 4110 (1995), URL http://link.aps.org/doi/

10.1103/PhysRevLett.75.4110.
[4] J. Zhao, M. Thakurathi, M. Jain, D. Sen, and J. K. Jain,

Phys. Rev. Lett. 118, 196802 (2017), URL https://

link.aps.org/doi/10.1103/PhysRevLett.118.196802.
[5] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev.

Lett. 48, 1559 (1982), URL http://link.aps.org/doi/

10.1103/PhysRevLett.48.1559.
[6] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983), URL

http://link.aps.org/doi/10.1103/PhysRevLett.50.

1395.
[7] J. K. Jain, Composite Fermions (Cambridge University

Press, New York, US, 2007).
[8] B. I. Halperin, Phys. Rev. Lett. 52, 1583 (1984), URL

http://link.aps.org/doi/10.1103/PhysRevLett.52.

1583.
[9] D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev.

Lett. 53, 722 (1984), URL http://link.aps.org/doi/

10.1103/PhysRevLett.53.722.
[10] M. Seidl, Phys. Rev. A 60, 4387 (1999), URL https:

//link.aps.org/doi/10.1103/PhysRevA.60.4387.
[11] M. Seidl, J. P. Perdew, and M. Levy, Phys. Rev. A 59,

51 (1999), URL https://link.aps.org/doi/10.1103/

PhysRevA.59.51.
[12] P. Gori-Giorgi, M. Seidl, and G. Vignale, Phys. Rev. Lett.

103, 166402 (2009), URL https://link.aps.org/doi/

10.1103/PhysRevLett.103.166402.
[13] F. Malet and P. Gori-Giorgi, Phys. Rev. Lett. 109,

246402 (2012), URL https://link.aps.org/doi/10.

1103/PhysRevLett.109.246402.
[14] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989), URL http:

//link.aps.org/doi/10.1103/PhysRevLett.63.199.
[15] G. S. Jeon, K. L. Graham, and J. K. Jain, Phys. Rev. B

70, 125316 (2004), URL http://link.aps.org/doi/10.

1103/PhysRevB.70.125316.

[16] Y. Zhang, G. J. Sreejith, N. D. Gemelke, and J. K. Jain,
Phys. Rev. Lett. 113, 160404 (2014), URL http://link.

aps.org/doi/10.1103/PhysRevLett.113.160404.
[17] C. J. Grayce and R. A. Harris, Physical Review A 50,

3089 (1994).
[18] W. Kohn, A. Savin, and C. A. Ullrich, International jour-

nal of quantum chemistry 100, 20 (2004).
[19] E. I. Tellgren, S. Kvaal, E. Sagvolden, U. Ekström,

A. M. Teale, and T. Helgaker, Phys. Rev. A 86,
062506 (2012), URL https://link.aps.org/doi/10.

1103/PhysRevA.86.062506.
[20] E. I. Tellgren, A. Laestadius, T. Helgaker, S. Kvaal, and

A. M. Teale, The Journal of chemical physics 148, 024101
(2018).

[21] M. Levy, Proceedings of the National Academy of Sci-
ences 76, 6062 (1979).

[22] E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
[23] See Supplementary Information, which includes back-

ground information, a proof of the Hohenberg-Kohn the-
orem for non-interacting composite fermions, a gener-
alization to finite temperatures, details of how the KS
equation is numerically solved, and a discussion of the
importance of self-consistency.

[24] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and
M. Levy, Phys. Rev. B 53, 3764 (1996), URL https:

//link.aps.org/doi/10.1103/PhysRevB.53.3764.
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