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We predict subharmonic entrainment of breather-soliton oscillations to a periodic perturbation at
the round-trip time TR in Kerr-nonlinear optical resonators; an integer ratio Tb/TR = N ≫ 1 results
for breathing period Tb. Rigid entrainment is observed with intermediate finesse (F ∼ 30− 40) for
N up to 20, and we propose a way to realize higher entrainment ratios at higher finesse. This non-
trivial synchronization across the widely separated timescales of the photon lifetime and round-trip
time points to a new direction for research in this field and may find application, for example, in
measurement of a pulse train repetition rate that is electronically inaccessible.

Optical solitons generated in high-Q Kerr-nonlinear
microresonators (microcombs, see Fig. 1a)[1, 2] are a
promising candidate for photonic integration of optical
frequency comb technology, which will enable a wide va-
riety of applications through portable synthesis, control,
and measurement of optical frequencies. The rich nonlin-
ear dynamics of microcombs are fundamentally interest-
ing and provide opportunities to tailor microcomb prop-
erties for applications. Some facets that have been inves-
tigated in depth are the effects of dispersion [3, 4], mode
structure [5–8], and Raman scattering [9–12], thermal ef-
fects [13–15], and spontaneous ordering of co-propagating
solitons [16, 17].

Under certain conditions the amplitude and duration
of microcomb solitons oscillate, or breathe, in time. This
manifests as modulation of the pulse energies in the out-
coupled pulse train, depicted in Fig. 1b; typically the
oscillation period Tb is much larger than the resonator
round-trip time TR. Breather solitons have been investi-
gated experimentally [18–21] and are well-known outside
of the microcomb field (e.g. [22, 23]), but the emphasis
for microcomb applications has mostly remained on non-
breathing solitons. Here we focus on breather solitons
and propose a new type of spontaneous synchronization
in microcombs: Subharmonic entrainment of breather os-
cillations to the round-trip time.

The fundamental timescale for evolution of the field in
a high-finesse cavity is the photon lifetime τph ≫ TR, and
it has generally been found that round-trip-time effects
do not need to be included to successfully model most
microcomb properties. However, small perturbations to
nonlinear systems can lead to qualitatively new behav-
ior, and in microcombs such a perturbation is provided
by periodic out-coupling and interference with the pump
field. We explore one possible effect of this perturbation
by numerically investigating subharmonic entrainment of
breather oscillations to the round-trip time such that an
integer ratio N = Tb/TR ≫ 1 arises. This entrainment
would represent a non-trivial synchronization between
slow (∼photon lifetime) and fast (∼round-trip time) dy-
namics for microcombs, which to our knowledge has not
previously been proposed, and would demonstrate spon-

taneous violation of the discrete time-translation sym-
metry (for t → t+ nTR, n = 1, 2, ...) of the equations of
motion for the intracavity field. Our work builds upon
previous investigations of subharmonic entrainment in
a variety of systems [24–27] and on previous studies of
period-doubling in passive [28] and lasing [29] fiber-loop
cavities, and takes place alongside recent discoveries of
spontaneous violation of discrete time-translation sym-
metry in quantum systems [30–32].
Our numerical investigations, depicted schematically

in Fig. 1b, reveal subharmonic entrainment of breather
oscillations to the round-trip time; the effect is illustrated
in Fig. 1c-f. We explore a regime of intermediate finesse
because this strengthens the round-trip-time perturba-
tion and makes simulations practical. We present results
for Tb/TR = N up to 13, and find that entrainment per-
sists over a range of system parameters, and even as they
are dynamically varied. Our simulations indicate that
the strength of entrainment decays exponentially with
increasing finesse, so we discuss possible routes towards
realization of the effect at higher finesse. As an example,
we show that introduction of fourth-order dispersion im-
mediately allows us to extend the effect to N = 20. This
ratio is high enough to use the effect to electronically
measure, for example, a microcomb repetition rate of 1
THz by measuring subharmonically-entrained breather
oscillations at 50 GHz. This could greatly simplify in-
tegration of microcombs for applications. We conclude
by discussing prospects for experimental realization of
entrained breather oscillations.
The canonical model for microcomb dynamics is the

Lugiato-Lefever equation (LLE) [33–38], which has been
successful in reproducing microcomb experimental re-
sults and informing system design. One version of the
equation reads [38]:

∂ψ

∂τ
= −(1 + iα)ψ + i|ψ|2ψ − i

β2
2

∂2ψ

∂θ2
+ F. (1)

Here ψ(θ, τ) and F represent the intracavity field enve-
lope and pump strength, and α and β2 represent the de-
tuning of the laser from the cavity (α > 0 for a laser
of lower frequency than the nearby cavity mode) and
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FIG. 1. The system under study. (a) Solitons in a Kerr-
nonlinear ring resonator, with bus waveguide. The intensity
profile |ψ|2 of a circulating soliton is shown in red, with two
out-coupled pulses separated by the round-trip time TR; am-
plitudes indicated by blue dots. (b) An Ikeda-map simula-
tion of a breather soliton conducted with parameters α = 4.5,
F 2 = 10, β2 = −0.2, and F = 12. The out-coupled pulse train
is shown in red as a function of round-trip times NRT , and
the gray surface plot depicts evolution (into the page) within
each round trip according to the GNLSE. Blue dots mark
amplitudes of out-coupled pulses |ψ|2max, and the black curve
is a conceptual guide. (c, d) Depictions of free (c, F 2 = 9)
and entrained (d, F 2 = 10, N = 10) breather oscillations for
α = 4.5, β2 = −0.02, and F = 24.69. In (d) we show the pe-
riodicity of the breather amplitudes for three different points.
(e, f) Breather amplitudes as a function of drive phase (NRT

modulo 1) over a simulation of ∼ 8000 round trips in the
free (e) and entrained (f) cases. In (f) the oscillator assumes
N = 10 discrete positions for each value of the drive phase;
no such order exists in (e).

the second-order dispersion (β2 < 0 for anomalous dis-
persion). The field ψ is defined over a co-moving az-
imuthal angle −π < θ < π and evolves over a slow time
τ = t/2τph. Normalization is provided in the Supplemen-
tal Material (SM) [39].

The LLE is an approximate model for microcomb dy-
namics that emerges in the high-finesse limit. Because
it exhibits continuous time-translation symmetry in the
slow time τ , the LLE cannot reveal effects arising from
the periodic round-trip time perturbation. We explore
these effects with an Ikeda map, a more fundamental
model from which the LLE may be obtained [40–43] (see
Ref. [43] for the form of the equations used here). In
this model, the field ψn(θ, s) evolves over the nth round
trip as a function of a normalized spatial coordinate s ac-
cording to a generalized nonlinear Schrodinger equation
(GNLSE, ubiquitous in describing propagation in Kerr-
nonlinear, dispersive media [44]) of the form:

∂ψ

∂s
= −(1− η)ψ + i|ψ|2ψ − i

β2
2

∂2ψ

∂θ2
, (2)

where the round trip corresponds to a distance ∆s =
π/F . The field at the beginning of the next round trip is
then obtained by incorporating out-coupling and pump-
ing via:

ψn+1(θ, 0) = e−i
π

F
α
(

1−
πη

F

)

ψn(θ, π/F) +
π

F
F. (3)

This model is depicted conceptually in Fig. 1b. To de-
fine the Ikeda map relative to the LLE, we specify the
resonator finesse F = 2πτph/TR and the coupling ratio
η = τph∆ωext, which quantifies the relative magnitudes
of external coupling with rate ∆ωext and internal dissi-
pation with rate ∆ωint = 1/τph−∆ωext. This Ikeda map
reduces to Eq. (1) in the high-finesse limit [43].
In this work we explore the limiting case η = 1, well

approximated by a resonator that is strongly overcou-
pled. This is natural because we consider a regime in
which the finesse is much lower than the value allowed
by, e.g., critical coupling (η = 1/2) of a typical microres-
onator, and setting η = 1 maximizes the strength of the
periodic round-trip-time perturbation. However, we also
verify that subharmonic entrainment persists for smaller,
experimentally realistic coupling ratios, e.g. η = 0.95.
Below we report on the results of our use of Ikeda map

simulations to study breather solitons. A detailed de-
scription of these simulations is provided in the SM [39].
We consider a breather soliton at detuning α = 4.5,

pump power F 2 = 10, dispersion β2 = −0.02, and cou-
pling ratio η = 1. We first examine the effect of de-
parting from the high-finesse limit. In Fig. 2a we show
the breathing period as a function of the resonator fi-
nesse; the period changes little relative to the photon
lifetime as the finesse is varied. We find that breather
period Tb expressed in units of τph is well described by
Tb(F) = Tb,LLE − A/F , where A ∼ 3.47 and Tb,LLE is
the breather period in the high-finesse limit. From pre-
liminary investigations of other points (described by de-
tuning α, pump power F 2, dispersion β2, and coupling
ratio η), it appears that this behavior is not universal,
and other powers of F may be required for agreement
with the observations.
The breather period Tb expressed in units of TR varies

greatly over the range 25 ≤ F ≤ 600 through the rela-
tion Tb = Tb ·F/2π (we use the symbols Tb and Tb for the
breather period expressed in units of τph and TR, respec-
tively). In Figs. 2b-e we present calculations of Tb for
intervals of finesse over which it approaches an integer.
The data exhibits plateaus of subharmonic entrainment,
where Tb deviates from the expected value and rigidly
snaps to an integer.
Figs. 2b-e include fits to an injection locking model

[45] that predicts the difference between the breather
frequency fb = 1/Tb and the subharmonic perturbation
frequency frep/N in terms of a free-running breather fre-
quency fb,0(F) = 1/Tb,0(F) and a locking bandwidth δ:

fb = frep/N + Sign(∆)× Re
√

∆2 − δ2, (4)
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FIG. 2. Exploration of breather entrainment. (a) Breather
period Tb (units of τph) as a function of finesse, with the
high-finesse limit shown in dashed black. The fit shown in
dotted blue is obtained from the simulation results indicated
by orange dots and is described in the text. The data points
presented in parts b-e are also included. (b-e) Breather period
Tb (units of TR) as a function of finesse over several intervals
where it approaches an integer. Fits using an injection lock-
ing model are shown in solid gray. (f) Locking range ∆F
as a function of finesse for η = 1 (η = 0.95) shown by filled
(empty) dots, obtained from the injection-locking model, with
a decaying exponential fit indicated by the solid (dashed) line.

where ∆ = fb,0(F) − frep/N and δ is determined by fit-
ting the data. For Figs. 2b-e fb,0(F) is assumed locally
linear and is obtained by fitting data far from the plateau.
We plot the locking range ∆F determined from the fit
as a function of the finesse in Fig. 2f, with a fit to a de-
caying exponential. This rapid decrease is expected for
several reasons: First, the periodic perturbation becomes
weaker with increasing finesse. Second, we expect the
system’s sensitivity to shifts in the timing of out-coupling
and pumping relative to a hypothetical oscillation enve-
lope (represented conceptually by the black curves in Fig.
1) to be related to ∂|ψ|2max/∂NRT , where |ψ|2max is the
amplitude of the breather envelope and NRT is the slow
time in units of TR. This sensitivity will decrease as Tb
increases with increasing finesse.

To verify that subharmonic entrainment does not occur
solely at the limit η = 1, we repeat the simulations de-
scribed above for η = 0.95. The locking range calculated
from these simulations is also presented in Fig. 2f, and
a full presentation and discussion of the results is given
in the SM [39]. These results indicate that, as expected,
the effect occurs at η = 0.95 but is slightly weaker than
for η = 1, attributable to the reduced strength of the
perturbation with smaller η.

We next investigate the plateaus of subharmonic en-
trainment with N = 10 for η = 1 as a function of the
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FIG. 3. Persistence of subharmonic entrainment with varia-
tion of F 2 and α. (a) Entrainment plateaus for variation of
F 2 and α, with approximations of Tb,0 (blue) and fit to the
injection-locking model (gray) obtained as described in the
text. (b-d) Rigidity of entrainment when F 2 is dynamically
varied using additive white Gaussian noise. (b) Histogram
of F 2 values for seven simulations, with the fit from part a
for scale. (c) Calculated spectra of breather amplitudes af-
ter observation over the second half of a simulation of 219

round trips. Colors correspond to b. The spectra are scaled
to the same peak amplitude; spectra obtained for narrower
F 2 distributions have larger coherent spikes at f = 0.1/TR.
(d) Thirty-dB width δf of the spectral peak at f = 0.1/TR,
calculated with resolution bandwidth ∼ 1 × 10−4/TR, as a
function of the ratio of the standard deviation σ of the F 2

values to the locking range ∆F 2. The model indicated by the
dashed line is described in the text.

pump power F 2 and detuning α and present the results
in Fig. 3. Fig. 3a shows entrainment plateaus as a func-
tion of F 2 and α, with fits to Eq. (4). For F 2 we use
spline interpolation between data far from the plateau
to approximate fb,0, which allows us to carry out the fit
without knowing the dependence of fb,0 on F

2. For α, we
lack data on the free-running frequency fb,0(α) below the
plateau centered near α = 4.5 (as all this data is strongly
pulled), so we use the data above the plateau to generate
an initial fit, and then use this fit to approximate the
free-running frequencies fb,0(α) over the full α-interval.
These fits provide qualitative approximations.

We also explore the effect of dynamical variations of
F 2. We calculate the spectrum of the breather am-
plitudes |ψ|2max in the presence of normally-distributed
time-varying F 2 values with standard deviations σ up
to 5∆F 2, where ∆F 2 = 0.087 is the (half width) lock-
ing range obtained from Fig. 3a; this value 5∆F 2 is
∼ 4 % of the mean F 2

0 = 10.0034. Figs. 3b-d summa-
rize the results. Fig. 3d shows the thirty-dB linewidth of
the breathing frequency as a function of σ, with a phe-
nomenological model of the tone as a Lorentzian that is
sampled with the appropriate resolution bandwidth and
with linewidth proportional to σ1.8. One arrives at a
model in which the linewidth is proportional to σ2 by as-
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suming that the breathing frequency varies linearly with
F 2, noting then that the power spectrum of breather-
frequency fluctuations is proportional to σ2, and observ-
ing that for white noise the linewidth is proportional to
this spectrum [46]. That σ1.8 provides a better fit to the
data at high σ may be due to the fact that the breathing
frequency does not actually vary linearly with F 2. The
model agrees well with the data at high σ, but at low
σ the data drops below the model, indicating a quali-
tative change as subharmonic entrainment stabilizes the
breathing frequency.

In this initial study we have investigated a regime of
intermediate finesse, F ∼ 30, and conducting detailed
Ikeda-map investigations for significantly higher values
of the finesse is impractical. However, the finesse of mi-
croresonators is typically above 1000, and lowering the fi-
nesse increases the threshold power for comb generation.
Moreover, we have seen that the strength of subharmonic
entrainment falls exponentially with increasing finesse.
Routes for overcoming this apparent obstacle could be
investigated in future theoretical and experimental work.
We have investigated a single LLE point in depth—this
leaves the remainder of parameter space open for explo-
ration. Moreover, there are effects that have been investi-
gated within the context of the LLE that could be used to
strengthen the effect, including Raman scattering, other
higher order nonlinearities, and higher-order dispersion.
Additionally, azimuthally varying the nonlinear, dissipa-
tive, or dispersive properties of the resonator could in-
crease the strength of round-trip-time effects (e.g. [47]).
Finally, the coupling rate ∆ωext could be spectrally var-
ied so that the round-trip-time perturbation at the pump
frequency is strong while out-coupling of the other comb
modes is weaker, reducing increases in threshold power
that come with lower finesse.

As an example, we consider that sharpening
the breather oscillation to increase the sensitivity
∂|ψ|2max/∂NRT may help realize this effect at higher fi-
nesse. To test this idea we incorporate fourth-order dis-
persion into the LLE and the GNLSE (Eqs. (1) and (2))

30 40 50
F

(b)

0

20

|ψ
|2 m

a
x

-1 0 1
Time (τph)

(a)

10-3

10-2

10-1

∆
F

15
16

17

20

FIG. 4. Extension of subharmonic entrainment to higher fi-
nesse. (a) LLE simulations of a breather soliton for β4 =
8 × 10−6 (red) and β4 = 0 (blue). Fourth-order dispersion
sharpens the breather oscillation. (b) Locking range ∆F ob-
served in Ikeda-map simulations of the two breathers from
part a. Including β4 = 8× 10−6 both shifts the locking-range
curve up and reduces its slope; locking ratios N for β4 6= 0
are indicated next to the data points.

by adding the term +iβ4

4!
∂4ψ
∂θ4

to the right-hand sides of
these equations (see SM for normalization of β4 [39]).
Including β4 with sign opposite to β2 can reduce the
mode-dependent detuning far from the pump (see [4]),
facilitating broad bandwidth, temporal pulse compres-
sion, and high peak power, but only for a pulse that
already has sufficient bandwidth to sample the reduced
detuning—therefore temporal narrowing and increased
peak power occurs for pulses that are already temporally
short, i.e. when the breather is near its peak amplitude.
An LLE simulation of the breather with β2 = −0.02 and
β4 = 8×10−6 reveals sharper and higher-amplitude oscil-
lations than in the case β4 = 0. Ikeda map simulations of
this breather reveal greater than ten-fold improvement in
the entrainment locking range, as depicted in Fig. 4. The
improved locking range allows us to observe the effect up
to at least a locking ratio of N = 20.

This increased locking ratio suggests one application
for subharmonically entrained breather solitons. Pro-
posals for photonic integration of microcombs use a
comb with an extremely high (∼ 1 THz) repetition
rate to achieve the octave-spanning spectrum required
for full frequency stabilization [48, 49], and a second
lower-repetition-rate comb measures the first comb’s rep-
etition rate. Generating a breather soliton in the ∼
1 THz resonator and measuring the frequency of en-
trained breather oscillations could simplify this system—
the locking ratio of N = 20 observed with fourth-order
dispersion would enable indirect measurement of a 1 THz
repetition rate through measurement of entrained oscil-
lations at 50 GHz.

Our investigation of subharmonic entrainment of
breather-soliton oscillations to the periodic round-trip-
time perturbation in passive, driven, Kerr-nonlinear ring
resonators goes beyond what has been investigated ex-
perimentally and what can be explored within the LLE
model for microcomb dynamics. We expect this pro-
posal of dynamical synchronization across microcomb
timescales to open up a new avenue for research in this
field, as to our knowledge effects like this have not yet
been investigated. This phenomenon and others like it
could prove useful in tailoring microcombs for applica-
tions. While it is not yet clear how to realize entrainment
of breather oscillations in high-finesse microresonators,
this idea could be immediately investigated experimen-
tally using passive fiber-loop ‘macro-ring’ resonators.
These resonators exhibit dynamics that are formally
equivalent to those of a microcomb, but have much lower
finesse. Many facets of Kerr-nonlinear dynamics have
been investigated in fiber loops (e.g. [12, 16, 50, 51]),
and they could be a useful test-bed for the theory that
we have proposed. We present our results with the hope
that they will excite interest in this fundamentally new
type of behavior, spur a new course of microcomb re-
search, and prove useful in developing this technology
towards maturity.
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