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The interaction between quantum two-level systems is typically short-range in free space and most
photonic environments. Here we show that diminishing momentum isosurfaces with equal frequen-
cies can create a significantly extended range of interaction between distant quantum systems. The
extended range is robust and does not rely on a specific location or orientation of the transition
dipoles. A general relation between the interaction range and properties of the isosurface is described
for structured photonic media. It provides a new way to mediate long-range quantum behavior.

The resonance dipole-dipole interaction between two
quantum two-level systems (TLS) is typically short-
range. There has been strong interest in realizing long-
range interactions to exploit collective physics such
as superradiance [1, 2], collective frequency shift [3],
Förster resonance energy transfer [4, 5], and quantum
entanglement [6–12]. The ability to modulate the dis-
tance dependence of these processes could have po-
tential applications in quantum information process-
ing [8, 13] and energy conversion [14]. Two components
contribute to the interaction: the evanescent near fields
and the propagating far fields (Fig. 1a&b). To enable
long-range interaction from the evanescent fields, one
could use evanescent fields with a long tail, such as de-
fect modes in the photonic bandgap [15–17]. However,
it is less obvious how to engineer propagating far fields
to enable long-range interaction. It is the goal of this
letter to provide a new perspective to understand the
general physical mechanism that is responsible for long-
range interaction induced by propagating far fields, and
identify photonic structures that are capable of extend-
ing the interaction range.

In free space, the range of far-field interaction is lim-
ited to the wavelength scale. When the wavelength is
long, such as in index-near-zero materials [18–22], the
interaction range can increase proportionally. However,
there are a few intriguing examples where the interac-
tion range extends far beyond the effective wavelength.
These include low-dimensional spaces, such as photonic
crystal waveguides and fibers [2, 23–30], or hyperbolic
materials in selected directions [31, 32]. These interest-
ing but isolated examples heavily rely on very specific
configurations. Thus, it is difficult to generalize the the-
oretical treatments to identify the underlying physics,
which unfortunately remains elusive. In this letter, we
show the deep connection between the interaction range
and the size and shape of the isofrequency surface in
momentum space. It can be generalized to a broad range
of physical systems and can reveal new systems capable
of realizing long-range interactions.
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Figure 1. Schematics of interactions between two TLSs con-
nected by (a) evanescent near-field modes, (b) propagating far-
field modes. (c) Momentum isosurface Sω(k)=ω0

with equal

frequencies ω0 and dSk is a small surface element.

We begin by examining the interaction between two
TLSs over a long distance. The TLSs are embedded in
a photonic environment that can be described by a dis-
persion relation ω = ω (k). Using the example of free
space, ω = c|k| = ck, where c is the speed of light. Other
dispersion relations can be seen in metamaterials, pho-
tonic crystals or waveguides. The Hamiltonian of the
TLSs and the photonic modes is given by [33]
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where ω0 is the resonant transition frequency of TLSs.
σ̂†i (σ̂i ) is the raising (lowering) operator of ith TLS. ωk

and â†k (âk) are the frequency and creation (annihilation)

operator of photons, respectively. gk (ri ) =
√
ωk/2ε0Vµi ·

ǫk is the coupling between the ith TLS and the photonic
mode k, where µi is the transition dipole moment of
the ith TLS and ǫk is the polarization direction of the
photonic mode k . One can derive the radiative interac-
tion Γ = ΓRe + iΓIm between two TLSs based on the above
Hamiltonian. The real and imaginary parts describe the
cooperative decay rate and cooperative energy shift, re-
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spectively. The focus of this letter will be the cooper-
ative decay rate. Similar conclusions can be drawn for
the cooperative energy shift.
We first provide a graphic illustration of why the

interaction between TLSs is short-range in free space.
Unlike most theoretical treatments used in the litera-
ture [32], we do not use the Green’s function method to
describe the radiative environment. Instead, we try to
keep all radiative modes in their explicit forms in order
to gain a more intuitive picture. As shown in Section
I of Supplementary Material (SM) [34], the real part of
the radiative interaction between TLSs can be expressed
in the following form:

ΓRe =

"
Sω0(k)

ρke
ik·RdSk. (2)

The integral is performed on an isosurface in mo-
mentum space, i.e. all wavevectors k that satisfy
ω (k) = ω0. The integrand includes two terms.
The first term is simply a polarization factor ρk =

ω0

16ε0π2vg (k)

(

µ1 · ǫk
)(

µ2 · ǫk
)∗
, which describes the relative

orientation of the transition dipole µ and the polariza-
tion of the electric field ǫ. Here vg (k) is the group ve-
locity of mode k. For degenerate polarization states, the
integration should also include all polarizations. Since
the polarization factor ρk is independent of the inter-
TLS distance, it does not affect the interaction range. It
is the second term, eik·R, that plays the critical role in
the physics of the interaction range. Here R = r1 − r2
is the distance vector between the two TLSs. The inte-
grand ρke

ik·R is a fast oscillating function, which gener-
ally results in cancellation of the integration when the
inter-TLS distance R is large. Therefore, the interaction
is always short-range. We can see this effect in Fig. 2a.
Here we consider two TLSs in free space. The spherical
isosurface has a radius of k = |k| = ω0/c. The real part
of ρke

ik·R is plotted on the isosurface. When R = 10λ,
there are rapid oscillations as k varies on the isosurface.
The resulting value of the integral is small, and there-
fore the interaction is weak at this long distance. When
the inter-TLS distance is small, for example R = 0.3λ,
the oscillation is slow (Figure 2c), leading to a sizeable
value of the integral and thus a strong interaction. The
interaction decays as the distance R grows (Fig. 2d).
The graphic illustration also indicates that the inter-

action range is inversely proportional to the size of the iso-
surface in momentum space. A large inter-TLS distance
R on a large isosurface leads to a fast oscillating inte-
grand on the isosurface that results in a small value of
the integral. One way to counteract this effect is to sub-
stantially reduce the isosurface size. Small isosurfaces
can save the integral from cancellation even for a fast-
oscillating function. Figure 2c shows the real part of the
integrand ρke

ik·R with a long inter-TLS distance R = 10λ
on an isosurface that has a radius that is 0.03 times that
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Figure 2. (a) Two dipolar TLSs spaced by a distance R = 10λ in
free space. The right panel shows the isosurface for the tran-

sition frequency in momentum space. The real part ρke
ik·R is

plotted on the isosurface. Red and blue colors indicate posi-
tive and negative maximum,respectively. (b) Similar to (a) but
with a shorter distance R = 0.3λ and thus slow oscillation on
the isosurface. (c) Two TLSs are placed in a specitifc photonic
environment, such as Weyl photonic crystal, where the isosur-
face radius, q = |k−kc |, can be very small. Here R = 10λ. R̂ in

(a-c) is fixed as (1,0,1) /
√
2. (d) & (e) The real part of radiative

interaction, normalized by ΓRe(R = 0), as a function of distance
between two TLSs in free space and the Weyl photonic crystal,
respectively. Red dots correspond to the cases in (a), (b), and
(c), respectively.

of the free-space isosurface. While the oscillation is still
fast, the small isosurface cannot accommodate many os-
cillations, yielding a sizable value of the integral. Fig-
ure 2e shows that this strong interaction is sustained
over a long distance if the isosurface is small. Specifi-
cally, for an isosurface with a radius of q, the real part
of interaction ΓRe scales as sin(qR)/qR. As the isosur-
face radius approaches zero q → 0, the range becomes
infinite. Here, we use a polarization factor ρk based on
plane waves, which, although a simplification, is suffi-
cient for estimating the scaling.

The size of isosurface is fixed in free space. But there
are many structured photonic environments that offer
smaller isosurfaces. Here, we useWeyl photonic crystals
as an example to demonstrate the inverse relationship
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Figure 3. (a) Structure of Weyl photonic crystal. A double-gyroid dielectric unit cell with four air spherical defects is same with
Ref. [37]. (b) Dispersion relation on the plane of kz = 0. The momentum is normalized by 2π/a, where a is the lattice constant.
(c) The real part of the radiative interaction ΓRe (normalized by ΓRe(R=0)) as a function of distance for TLS transition frequencies
(upper) ω = 0.5545, (middle) 0.5520 and (lower) 0.5512c/a, which are marked with white contours i, ii, and iii in (b),respectively.

The inter-TLS direction is R̂ = (−1,1,1) /
√
3. The dipole orientations are µ̂1,2 = (−1,1,1) /

√
3 and µ1 is fixed at central point of the

unit cell. Green dashed curves are the envelops of the curve. Inset (i-iii) are the isosurfaces in momentum space. (d) The linear
relationship between decay length ℓD and inverse size of isosurfaces 1/ q.

between the interaction range and the isosurface. Weyl
photonic crystals [35, 36] exhibit a conic dispersion re-
lation in 3D space, similar to Dirac dispersion relations
in 2D space. The isosurface gradually reduces to a point
around the apex of the conic dispersion, i.e. the Weyl
point. Observation of this small isosurface suggests that
we could expect long-range interactions around isolated
Weyl points. Specifically, we consider a double gyroid
structure with four air spherical defects (Fig. 3a) to
break parity symmetry yielding two pairs ofWeyl points
at identical frequencies [37]. The dispersion relation on
the plane of kz = 0 is shown in Fig. 3b with two pairs of
Weyl points at the frequencyωwp = 0.55096c/a. The iso-
surface becomes infinitesimally small at the Weyl point.

Using these isosurfaces, we numerically calculate the
interaction between two TLSs placed inside the Weyl
crystal. The photonic modes are simulated using the
MPB software package [38]. The details of the calcu-
lation are shown in SM [34]. Figure 3c shows the inter-
action as a function of the inter-TLS distance for three
different transition frequencies, which are also labeled
by white lines in Fig. 3b. The isosurfaces have four
lobes because there are four Weyl points, as shown in
Fig. 3c (i-iii). As the TLS transition frequency ap-
proaches the Weyl point, the isosurface size decreases,
causing the interaction extends to extend to a signifi-
cantly greater range. When the transition frequency is
0.00024c/a away from the Weyl point (panel iii in Fig.
3c), the interaction shows a negligible decay even at 30
wavelengths (Fig. 3c bottom).

The decaying and oscillating patterns in these curves
are attributed to a few different origins. At the largest
scale, the envelop scales as sin(q̄R)/q̄R, where we use q̄
to roughly characterize the size of the subsurface (we
will discuss the impact of the shape of isosurface later).
The medium-range oscillation is due to the interplay
of four Weyl points at the same frequency. The fastest
oscillation is due to the modulation of the nonuniform
field within a unit cell of the photonic crystal. The long-
range interaction observed here is robust in that it does
not rely on the orientation of the dipole direction or
the spatial placement of TLSs (See more discussion in
SM [34]).

We can quantitatively characterize the interaction
range by numerically fitting the envelope. These en-
velops are shown by the dashed line in Fig. 3c. We fur-
ther define a range ℓD as the distance when the envelop
drops to half of its maximum value. We calculate this
range for TLSs at different transition frequencies near
the Weyl points, corresponding to different isosurface
sizes. The results are shown in Fig. 3d. A clear linear re-
lationship is demonstrated between ℓD and the inverse
of the isosurface size 1/q̄. Because the isosurfaces are
not spherical, we use q̄ =

√
Sω/4π to define the isosur-

face size, where Sω is the surface area of isosurfaces.

Thus far, we have shown that the size of the isosur-
face plays a critical role in the interaction range. Next,
we will discuss the role of the shape of the isosurface.
A spherical isosurface leads to an isotropic interaction
range. On the other hand, a non-spherical isosurface
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generally creates an anisotropic interaction range: the
interaction range depends on the direction of the inter-
TLS distance vector R̂. There is a general reciprocal rela-
tionship between the interaction range and the dimen-
sion of the isosurface when projected along R̂.
Let us take the example of an ellipsoidal isosurface

in an anisotropic media. The interaction range is longer
when the two TLSs are placed along the direction of the
short axis of the ellipsoid ŝ, than when they are along
the long axis l̂. We can easily see this effect by observing
the oscillation pattern of ρke

ik·R on an ellipsoidal iso-
surface as shown in Fig. 4a. When R̂ is parallel to the
long axis l̂, we have many oscillations and strong can-
cellation of the integration. On the other hand, when R̂
is parallel to the short axis ŝ, we have fewer oscillations
and weaker cancellation.
To demonstrate this effect in Weyl photonic crystals,

we plot the isosurface at frequency ω =ωwp+0.0084c/a,
where the isosurface has a flat edge-softened rectangu-
lar geometry (Fig. 4b). We plot the real part of the in-
tegrand in Eq. (2) on the isosurface for three different
R. Here the magnitude of R is fixed, but its direction
R̂ varies from the short axis ŝ to the long axis l̂. The
cancellation effect is weaker when R is aligned with the
short axis and stronger along the long axis. We also cal-
culate the interaction as a function of the distance for
the three directions shown in Fig. 4b. The range is con-
spicuously longer for TLSs placed along the short axis of
the isosurface than that for the long axis as shown in Fig.
4c. In the case shown in Fig. 4, the frequency is greatly
detuned from the Weyl point, and thus, the interaction
range is not as long as those shown in Fig. 3.
The extended range of the dipole-dipole interaction

extends beyond quantum systems. In the microwave
regime, where Weyl photonic crystals have been exper-
imentally realized on a printed circuit board [36], the
resonant dipole-dipole interaction range can also be ex-
tended. The range will also be limited by the propaga-
tion length of the waves inside such systems due to finite
absorption by metallic materials.
We also emphasize that the relation between the in-

teraction range and the isosurface is not unique to Weyl
photonic crystals. It is generally applicable to periodi-
cally structured media. For example, in 2D space, the
scaling of the interaction range follows J0(kR), where J0
is the Bessel function of the first kind. For a 2D photonic
crystal, a spherical isosurface with a radius of q creates a
different scaling law that follows J0(qR). More examples
are discussed in Sec. II of SM [34].
We have discussed that the interaction range. An-

other important aspect is the strength of the interac-
tion. We chose the linear dispersion near Weyl points
because it makes it easy to separate the effect of the iso-
surface from other effects such as group velocity and
density of states. However, the shrinking isosurface
combined with a finite group velocity also decreases the
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Figure 4. (a) Real part of the integrand in Eq. (2) on an ellipti-

cal isosurface with (left) R̂=(0,1,0), (middle) (0,1,1) /
√
2, and

(right) (0,0,1) . Unit vectors ŝ and l̂ represent short and long
axis of the anisotropic isosurface. The dipole orientation is
fixed as µ̂1,2 = (0,0,1). (b) Same as (a), but the isosurface is in
the Weyl photonic crystal in Fig. 3a at frequency ω = 0.555c/a
and the dipole orientation is fixed as µ̂1,2 = (0,1,0). (c) The
absolute value of ΓRe as a function of distance R. Light green,
blue and red curves, respectively, correspond to R̂ in left, mid-
dle, and right cases of (b).

interaction strength. At the Weyl point, the interaction
strength is zero. The linear dispersion near a Weyl point
results in a trade-off between the interaction range and
strength. Such a trade-off can be alleviated in 2D crys-
tals and with a high order dispersion relation. We dis-
cussed the scaling of the interaction strength in Sec. II
in SM [34].

Visual inspection of the isosurface provides a conve-
nient tool to understand a broad class of long-range in-
teraction phenomena. We now comment on the con-
nection between our approach and the existing litera-
ture. The behavior of index-near-zero materials [18]
was explained by a long effective wavelength. Alter-
natively, it can also be conveniently explained by our
method: the index-near-zero material also has an ultra-
small isosurface. In addition to these examples, we can
envision that Dirac points in 2D photonic crystals also
provide small ‘isosurfaces’ (isofrequency contours) for
long-range interaction. Ref. [16] shows that inside the
photonic bandgap, long tails of evanescent fields can in-
duce long-range interaction. Here we can also see that
outside the photonic bandgap but near the band edge,
the propagating far fields have small isosurfaces, offer-
ing a different mechanism for long-range interaction. A
hyperbolic material, where long-range interactions were
allowed along specific directions, was treated using the
Green’s function method [32]. Using our graphic inter-
pretation allows one to intuitively see that only special
directions allow long-range interactions (see the visual-
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ization in SM [34]).
To conclude, we show the deep connection between

the interaction range and the isosurface in momentum
space. Both the size and shape of the isosurface affect
the interaction range. The method introduced here pro-
vides an intuitive understanding of underlying physics
that is somewhat buried in traditional treatments, and
we were able to use our method to help understand sev-
eral photonic systems from the existing literature. It
also provides a general recipe to search for new pho-
tonic systems that support long-range interactions.
This work was supported by the National Science

Foundation (NSF) through the University of Wiscon-
sin Materials Research Science and Engineering Center
DMR-1720415. L.Y. and Z.Y. were also supported by the
Defense Advanced Research Projects Agency (DARPA)
(DETECT program). L. Y. also acknowledges the finan-
cial support from NSF EFRI Award-1641109.

∗ zyu54@wisc.edu
[1] M. O. Scully and A. A. Svidzinsky, Science 325, 1510

(2009).
[2] P. Solano, P. Barberis-Blostein, F. K. Fatemi, L. A. Orozco,

and S. L. Rolston, Nature communications 8, 1857 (2017).
[3] Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, and R. Oz-

eri, Phys. Rev. Lett. 113, 193002 (2014).
[4] R. M. Clegg, Current opinion in biotechnology 6, 103

(1995).
[5] F. J. Garcia-Vidal and J. Feist, Science 357, 1357 (2017).
[6] A. F. Van Loo, A. Fedorov, K. Lalumière, B. C. Sanders,

A. Blais, and A. Wallraff, Science 342, 1494 (2013).
[7] G. Burkard and A. Imamoglu, Physical Review B 74,

041307 (2006).
[8] D. Petrosyan and M. Fleischhauer, Physical review letters

100, 170501 (2008).
[9] S. F. Mingaleev, Y. S. Kivshar, and R. A. Sammut, Physical

Review E 62, 5777 (2000).
[10] A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno,

L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal,
Physical review letters 106, 020501 (2011).

[11] E. Shahmoon and G. Kurizki, Physical Review A 87,
033831 (2013).

[12] J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu,
D. E. Chang, and H. Kimble, Proceedings of the National
Academy of Sciences 113, 10507 (2016).

[13] A. Imamog, D. D. Awschalom, G. Burkard, D. P. DiVin-
cenzo, D. Loss, M. Sherwin, A. Small, et al., Physical re-
view letters 83, 4204 (1999).

[14] D. Maxwell, D. Szwer, D. Paredes-Barato, H. Busche, J. D.

Pritchard, A. Gauguet, K. J. Weatherill, M. Jones, and
C. S. Adams, Physical review letters 110, 103001 (2013).

[15] G. Kurizki, Physical Review A 42, 2915 (1990).
[16] J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov,

H. J. Kimble, and D. E. Chang, Nature Photonics 9, 326
(2015).

[17] V. Notararigo, R. Passante, and L. Rizzuto, Scientific re-
ports 8, 5193 (2018).
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