

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Demonstration of a Timescale Based on a Stable Optical Carrier

William R. Milner, John M. Robinson, Colin J. Kennedy, Tobias Bothwell, Dhruv Kedar, Dan G. Matei, Thomas Legero, Uwe Sterr, Fritz Riehle, Holly Leopardi, Tara M. Fortier, Jeffrey A. Sherman, Judah Levine, Jian Yao, Jun Ye, and Eric Oelker
Phys. Rev. Lett. **123**, 173201 — Published 21 October 2019
DOI: 10.1103/PhysRevLett.123.173201

Demonstration of a time scale based on a stable optical carrier

William R. Milner,^{1,*} John M. Robinson,¹ Colin J. Kennedy,¹ Tobias Bothwell,¹

Dhruv Kedar,¹ Dan G. Matei,² Thomas Legero,² Uwe Sterr,² Fritz Riehle,²

Holly Leopardi,³ Tara M. Fortier,³ Jeffrey A. Sherman,³ Judah Levine,³ Jian Yao,^{3,†} Jun Ye,^{1,‡} and Eric Oelker^{1,§}

¹JILA, NIST and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA

²Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

³National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA

We report on the first time scale based entirely on optical technology. Existing time scales, including those incorporating optical frequency standards, rely exclusively on microwave local oscillators owing to the lack of an optical oscillator with the required frequency predictability and stability for reliable steering. Here, we combine a cryogenic silicon cavity exhibiting improved long-term stability and an accurate ⁸⁷Sr lattice clock to form a time scale that outperforms them all. Our time scale accumulates an estimated time error of only 48 ± 94 ps over 34 days of operation. Our analysis indicates that this time scale is capable of reaching a stability below 1×10^{-17} after a few months of averaging, making timekeeping at the 10^{-18} level a realistic prospect.

Accurate and precise timing is critical for a wide array of applications, ranging from navigation and geodesy to studies of fundamental physics [1–6]. The worldwide time standard, Coordinated Universal Time (UTC), is synthesized from a global network of atomic clocks and disseminated at monthly intervals. National metrology institutes bridge the gap between updates of UTC by broadcasting independent time scales derived from ensembles of microwave local oscillators steered to accurate atomic frequency standards [7, 8]. To advance the frontier of precision timekeeping, the development of both improved local oscillators and atomic frequency standards is imperative.

Optical atomic clocks, currently up to two orders of magnitude more accurate and stable than their microwave counterparts [4, 9–13], show promise as frequency standards for time scale applications. Recent efforts to incorporate optical clocks into existing microwave timescales have lead to improved performance [14–16]. However, despite the fact that optical clocks have demonstrated mid- 10^{-17} level stability in one second of averaging [17, 18], time scales steered to optical standards have thus far required weeks of averaging to reach 10^{-16} level precision [16, 19]. This disparity in performance arises due to down conversion of noise from the local oscillator - a consequence of steering to an atomic standard in the presence of dead time - which degrades the long-term stability of the time scale [16]. This limitation motivates the development of local oscillators with improved stability, particularly at averaging times around the typical interval between clock measurements (10^3 to 10^5 s). In parallel, improvements in local oscillator stability allow a timescale to maintain a competitive level of performance even when relaxing the requirements on optical clock uptime.

In this Letter, we report on the first realization of a time scale based on an optical local oscillator (OLO) which outperforms state-of-the-art microwave oscillators steered to either microwave or optical frequency standards. This all-optical time scale scale consists of an ultrastable laser based on a cryogenic silicon reference cavity that is steered daily to an accurate ⁸⁷Sr lattice clock [20] over a month-long cam-

paign. During this period, the frequency stability of the OLO surpasses that of the hydrogen masers in the UTC(NIST) time scale at all averaging intervals up to multiple days [21], demonstrating the requisite stability for improved time scale performance. Our analysis indicates that daily steering of the OLO frequency with 50% clock uptime allows for a time scale instability below the 10^{-17} level within 85 days of operation. Our local oscillator frequency is easily predictable using conventional time scale steering algorithms, allowing us to limit the estimated time error to only 48 ± 94 ps after 34 days of operation. The continuous availability of the OLO coupled with the on-demand performance of our optical clock make our system viable for future inclusion in UTC(NIST). This new variant of time scale harnesses both the improved accuracy and stability of optical standards and provides a viable blueprint for the upgrade of time scales worldwide.

After a decade of development [22, 23], cryogenic silicon reference cavities are now a proven platform for laser stabilization at the mid- 10^{-17} level [24, 25]. The exceptional short-term stability of these local oscillators has enabled advances in optical clock stability [17]. These systems outperform all free-running local oscillators at averaging times below 1×10^4 seconds [17] and exhibit orders-of-magnitude lower frequency drift than other OLOs [24, 26]. However, achieving a stability commensurate with the best microwave oscillators at longer averaging times has remained an elusive goal, hampering their usefulness as time scale flywheel oscillators. The OLO used in our time scale, based on a 21 cm long Si cavity operating at 124 K, was recently optimized to significantly improve its long-term stability. The use of superpolished optics and thermal control of the environment limit parasitic etalons and active optical power stabilization reduces frequency excursions from laser intensity drift [21, 27–29].

We combine our local oscillator with an accurate optical frequency standard to form an all-optical time scale. Over a 34 day interval, a strontium lattice clock with systematic uncertainty of 2.0×10^{-18} [20] is used to track the OLO frequency with 25 percent uptime. Daily measurements of the OLO allow us to build a reliable predictive model of its

FIG. 1. (a) An array of three lasers are locked to ultrastable Fabry-Pérot resonators. A femtosecond frequency comb transfers the stability of the OLO (124 K Si cavity) from 1542 nm to a prestabilized laser at 698 nm used to perform clock spectroscopy in a 1D ⁸⁷Sr lattice clock. (b) AT1, a free running microwave time scale at NIST is compared continuously against the OLO signal over a fiber optic link using a hydrogen maser (ST14) as a transfer oscillator. An optical fiber link between JILA and NIST allows for stable transfer of the optical time scale to NIST for future integration into UTC(NIST).

frequency evolution. As new frequency data become available, the model is updated to better reflect its current behavior. The OLO is steered using the model to correct for changes in its frequency over time, and any residual frequency fluctuations ultimately determine the time scale stability. The analysis required to realize the time scale was carried out in postprocessing, though we emphasize that our approach is compatible with real-time implementation.

To track frequency excursions larger than the low- 10^{-16} level during intervals when the optical clock is offline, the OLO must be compared with two independent ultrastable lasers based on a 6 cm silicon cavity operated at 4 K [24] and a 40 cm ultra-low expansion (ULE) cavity [30]. Because the three systems have comparable short-term stability, one may use a three-cornered hat analysis to identify any significant frequency jumps in the OLO and update the predictive model accordingly [21].

A schematic of our optical time scale is presented in Fig. 1(a). In order to reference the ⁸⁷Sr clock laser to the 124 K silicon cavity, we transfer its optical stability from 1542 nm to a prestabilized laser at 698 nm using a femtosecond Er:fiber frequency comb with negligible additive instability [17]. The frequency corrections applied to AOM1 by the stability transfer servo are recorded to monitor the relative frequency fluctuations between the 40 cm ULE cavity and the OLO. The stabilized 698 nm light is then tuned to resonance for the ⁸⁷Sr clock transition using AOM2. The AOM2 correction signal is recorded and yields the OLO frequency relative to the ⁸⁷Sr

FIG. 2. (a) The OLO frequency (Si) is measured at 698 nm using a 87 Sr lattice clock. A linear plus exponential trend, $a + bt + ce^{-\frac{t}{d}}$, agrees well with the raw frequency data. The fit parameters are a = 24.16 Hz, b = -9.632 Hz/day, c = -23.17 Hz, and d = 7.813 days. (b) The residuals of the OLO comparisons against the 87 Sr clock and the NIST AT1 time scale after subtracting the drift trend from (a) from both datasets.

transition. An optical beatnote at 1542 nm between the OLO and the 6 cm Si cavity serves as a continuous monitor of their frequency difference. Fig. 1(b) depicts AT1, a free running microwave time scale at NIST. Using a hydrogen maser as a transfer oscillator, AT1 is compared remotely with the local oscillator over a stabilized fiber-optic link [21, 31]. To enable this comparison, the OLO is down converted to the RF domain using a frequency comb. This provides an additional record of the long-term performance of the OLO that is nearly continuous (95% uptime) over the measurement campaign. We note that AT1 is chosen rather than UTC(NIST) due to its superior stability over the averaging intervals of relevance to this study.

A record of the OLO frequency during the data campaign spanning from a modified Julian date (MJD) of 58430 to 58464 is presented in Fig. 2(a). The clock ran daily with the exception of MJD 58444 and 58447. Three days before the first measurement, the optical power incident on the cavity was changed to reset an intensity noise servo. Consistent with prior silicon cavity drift studies, the frequency evolution of the OLO after adjusting the incident optical power is well

FIG. 3. An estimate of the time error evolution of the optical time scale over the 34 day data campaign results in an integrated value of 48 ± 94 ps. The peak-to-peak value of 197 ps is dominated by a four day window that includes the two days when the ⁸⁷Sr clock was not operated. The RMS spread in time error for two time scales based on repeated simulations of a maser steered to either a microwave or optical frequency standard are shown for comparison [21].

modeled by a constant linear drift plus an exponential relaxation term: $a + bt + ce^{-\frac{t}{d}}$ [24]. Fig. 2(b) shows the residuals of the OLO comparisons with the clock and AT1 after subtracting the modeled drift trend determined by a fit to the ⁸⁷Sr clock data. Perfect correlation between the two data sets is not expected as both AT1 and the microwave link contribute additional instability to the Si-AT1 record [21].

During the interval between clock operation on MJD 58441 and 58442, two frequency jumps on the OLO were identified with a combined amplitude of 5.02×10^{-15} . A correction of the same magnitude is applied to all data after this step when performing the analysis presented in this work. No significant change in the long-term drift trend of the local oscillator was observed following these excursions. Under real-time operating conditions, we anticipate an additional time error of less than 5 ps from these two jumps [21].

To realize a time scale, the OLO frequency record in Fig 2(a) is steered using a predictive model to minimize its offset from the atomic frequency standard. The predictive model utilizes a Kalman filter to estimate the frequency of the OLO at a given time based on prior measurements with the clock. The drift in the OLO frequency between daily measurements is well approximated by a quadratic function: $k_0 + k_1t + \frac{k_2t^2}{2}$. The model prediction is determined by a state vector $[k_0, k_1, k_2]$ that is updated epoch-by-epoch when the ⁸⁷Sr clock is running. We stress that this technique does not utilize a priori knowledge of the drift coefficients from Fig 2(a). When the clock is online, the Kalman filter adapts rapidly to follow the current drift trend of the cavity and the prediction remains accurate provided the drift does not change significantly between daily measurements. Further detail on the Kalman filter algorithm is provided in [21, 32].

To evaluate the performance of a time scale, one typically

compares it against a reference time scale with significantly lower timing uncertainty. To our knowledge, no such time scale exists in this case. Instead we treat the ⁸⁷Sr clock as an ideal frequency reference and examine the fractional frequency offset between the steered OLO record and the clock transition frequency, hereafter referred to as the prediction error. We define the time error of our time scale as the integral of the prediction error over time.

If the frequency record were continuous, the time error could be determined to within the measurement precision of the clock. However, a finite gap of time separates the frequency measurements in Fig. 2(a), ranging from the 5 second interrogation cycle of our experiment to 24 hours between daily measurements. Most of the time error accumulates during the longer gaps, when the Kalman filter must accurately predict changes in the OLO frequency without new measurement data from the clock. The time error contribution from a gap is simply the gap duration multiplied by the mean prediction error during this interval. However, the latter quantity cannot be determined exactly from the available data. Instead, we estimate the mean prediction error by averaging the values before and after the gap and multiply by the gap duration to compute an estimated time error. We compute a 1σ confidence interval for the estimated time error through repeated simulations of the OLO frequency during each gap [21].

An estimate of the integrated time error of our optical time scale is presented in Fig. 3. After 34 days of integration our time scale accumulates an error of 48 ± 94 ps. For comparison we simulate time scales consisting of a hydrogen maser steered to a ¹³³Cs fountain for 24 hours/day and a hydrogen maser steered to a ⁸⁷Sr optical clock for 6 hours/day using the same Kalman filter and noise models for the maser and fountain described in [19]. The typical performance of both time scales is assessed by computing time errors from repeated simulations[21, 33], and their RMS spread over a 34 window is depicted in Fig. 3. Both exhibit a larger time error than the all-optical time scale.

Because the optical clock is run intermittently, the longterm stability of the time scale will be limited by a $1/\sqrt{\tau(s)}$ slope arising from aliased local oscillator noise akin to the Dick effect [16, 19]. Determining this stability limit requires an accurate characterization of the OLO. We evaluate the stability of our OLO by analyzing the frequency noise of the residuals in Fig. 2(b). One complicating factor are the gaps in the frequency record during clock downtime. A gap-tolerant Allan variance similar to [36] is used to compute an estimated stability of the OLO out to multiple day averaging intervals.

The result of this analysis is plotted in Fig. 4. The OLO stability is fit to a noise model that includes the known thermal noise floor [17] and a random walk frequency noise term, resulting in an instability at long averaging times consistent with $\sigma_{RW} = 1.3 \times 10^{-18} \sqrt{\tau(s)}$. The OLO maintains an instability below 10^{-15} out to 6×10^5 s, more than an order of magnitude improvement over the previous characterization of this system [25]. The frequency stability of the Si-AT1 record is presented as well and its value at averaging times past 10^5

FIG. 4. The silicon cavity stability is computed from the detrended ⁸⁷Sr data in Fig 2(b) using a gap-tolerant Allan variance similar to [36]. The data is fit to a noise model with an instability of $\sigma = 1.3 \times 10^{-18} \sqrt{\tau(s)}$ at long averaging times. The long-term stability of the OLO is also inferred from a continuous measurement against the NIST AT1 time scale.

s agrees with the clock measurement within statistical uncertainty. At shorter averaging times, the stability is consistent with a noise model [21] accounting for instability from the microwave link, the OLO, and AT1 [37].

With an accurate noise model for the OLO in hand, we now consider the anticipated long-term stability of our time scale as a function of optical clock duty-cycle. Similar to [16, 19], we simulate a lengthy local oscillator frequency record using the model presented in Fig. 4 with the drift trend from Fig. 2(a) added. This record is then steered to a simulated ⁸⁷Sr lattice clock for a fixed interval each day using the same Kalman filtering techniques described above. We compute an Allan deviation of the prediction error to determine the stability of the time scale. To quantify the impact of our improved local oscillator we carry out the same analysis for a similar time scale where the OLO has been substituted with a hydrogen maser. The noise model for the simulated hydrogen maser is based on the typical stability of the best performing masers in the UTC(NIST) time scale [19].

Fig. 5 shows the results of our analysis. As anticipated, the long-term stability of the time scale improves with increased clock uptime and reduced local oscillator noise and is reasonably consistent with the expected instability limit from aliased local oscillator noise past 10^6 s [21, 38]. When the optical clock is run with the same duty cycle, the steered OLO significantly outperforms a steered hydrogen maser at all averaging times. Even when steering one hour per day, our time scale is more stable than a hydrogen maser steered with a 50 percent duty cycle. This capability allows for competitive time scale performance with significantly relaxed uptime requirements. Based on this analysis, we expect a stability of approximately 1.8×10^{-17} after a 34 day campaign with an average clock uptime of 6 hours/day. This is in good agreement with the

FIG. 5. Expected fractional frequency stability of the optical time scale. The stability of our optical time scale is analyzed for two optical clock duty cycles. Our optical time scale is compared to a hydrogen maser based time scale steered to an optical lattice clock with identical uptime or a cesium fountain clock operating continuously.

observed integrated time error of 48 ± 94 ps over 34 days, or $1.6\pm 3.2\times 10^{-17}$ in fractional units. When operating the clock 12 hours per day, our all-optical time scale remains at or below the 2×10^{-16} level at all averaging times and is projected to reach a stability below 10^{-17} after only 85 days of operation. Additional effort on automation should allow for a clock duty cycle well above 50%. Using an array of N independent silicon cavities would improve the stability by a factor of $1/\sqrt{N}$ [16].

By combining an improved local oscillator with an accurate high-uptime optical clock, we have demonstrated a novel time scale architecture with enhanced stability. Additional technical upgrades of our silicon cavity can further improve our optical time scale stability, including greater passive thermal isolation, shorter optical path lengths and operation closer to the silicon coefficient of thermal expansion zero crossing. In addition, reducing the optical power incident on the cavity offers the capability to reduce the linear drift [24].

Future efforts will leverage existing time transfer infrastructure in Boulder, CO to incorporate this optical technology into the UTC(NIST) time scale. An underground fiber network is in place to support phase-stabilized optical signal transfer from JILA to NIST with negligible excess noise [39, 40]. Using a femtosecond frequency comb [41, 42], our optical time scale signal will be linked to UTC.

We thank J.A. Muniz, T.R. O'Brian, A. Bauch, and J.L. Hall for careful reading of the manuscript and L. Sonderhouse for technical contributions. This work is supported by the National Institute of Standards and Technology, Defense Advanced Research Projects Agency, Air Force Office for Scientific Research, National Science Foundation (NSF PHY-1734006), Physikalisch-Technische Bundesanstalt, and the Cluster of Excellence (EXC 2132 Quantum Frontiers).

U.S. and T.L. acknowledge support from the Quantum sensors (Q-SENSE) project supported by the European Commission's H2020 Marie Sklodowska-Curie Actions Research and Innovation Staff Exchange (MSCA RISE) under Grant Agreement Number 69115. E.O. and C.J.K acknowledge support from the National Research Council postdoctoral fellowship.

W.R.M. and E.O. contributed equally to this work.

- * william.milner@colorado.edu
- [†] jian.yao@colorado.edu
- [‡] Ye@jila.colorado.edu
- § ericoelker@gmail.com
- [1] N. Ashby, Living Reviews in Relativity 6, 1 (2003).
- [2] B. M. Roberts, G. Blewitt, C. Dailey, M. Murphy, M. Pospelov, A. Rollings, J. A. Sherman, W. Williams, and A. Derevianko, Nat. Commun. 8, 1195 (2017).
- [3] P. Delva, N. Puchades, E. Schönemann, F. Dilssner, C. Courde, S. Bertone, F. Gonzalez, A. Hees, C. Le Poncin-Lafitte, F. Meynadier, R. Prieto-Cerdeira, B. Sohet, J. Ventura-Traveset, and P. Wolf, Phys. Rev. Lett. **121**, 231101 (2018).
- [4] T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, Nat. Photon. 10, 662 (2016).
- [5] M. Lombardi, A. Novick, B. Cooke, and G. Neville-Neil, Journal of research of the National Institute of Standards and Technology 121, 436 (2016).
- [6] C. J. Kennedy, In preparation (2019).
- [7] A. Bauch, S. Weyers, D. Piester, E. Staliuniene, and W. Yang, Metrologia 49, 180 (2012).
- [8] G. D. Rovera, S. Bize, B. Chupin, J. Guéna, P. Laurent, P. Rosenbusch, P. Uhrich, and M. Abgrall, Metrologia 53, S81 (2016).
- [9] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, Nature 506, 71 (2014).
- [10] T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, and J. Ye, Nat. Commun. 6, 6896 (2015).
- [11] W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, and A. D. Ludlow, Nature 564, 87 (2018).
- [12] N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, Phys. Rev. Lett. **116**, 063001 (2016).
- [13] S. A. Brewer, J. S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, Phys. Rev. Lett., In Press (2019).
- [14] H. Hachisu, F. Nakagawa, Y. Hanado, and T. Ido, Sci. Rep. 8, 4243 (2018).
- [15] C. Grebing, A. Al-Masoudi, S. Dörscher, S. Häfner, V. Gerginov, S. Weyers, B. Lipphardt, F. Riehle, U. Sterr, and C. Lisdat, Optica 3, 563 (2016).
- [16] J. Yao, J. A. Sherman, T. Fortier, H. Leopardi, T. Parker, W. Mc-Grew, X. Zhang, D. Nicolodi, R. Fasano, S. Schäffer, <u>et al.</u>, arXiv preprint arXiv:1902.06858 (2019).
- [17] E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, et al., Nat. Photon., In Press (2019).

- [18] M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. Yoon, G. Milani, D. Nicolodi, J. Sherman, et al., Nat. Photon. 11, 48 (2017).
- [19] J. Yao, T. E. Parker, N. Ashby, and J. Levine, IEEE transactions on ultrasonics, ferroelectrics, and frequency control 65, 127 (2018).
- [20] T. Bothwell, D. Kedar, E. Oelker, J. M. Robinson, S. L. Bromley, W. L. Tew, J. Ye, and C. J. Kennedy, arXiv preprint arXiv:1906.06004 (2019).
- [21] See Supplemental materials.
- [22] T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, Nat. Photon. 6, 687 (2012).
- [23] W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, et al., Phys. Rev. Lett **119**, 243601 (2017).
- [24] J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, Optica 6, 240 (2019).
- [25] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, Phys. Rev. Lett. **118**, 263202 (2017).
- [26] C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, Opt. Lett. 39, 5102 (2014).
- [27] P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, Opt. Express 20, 10617 (2012).
- [28] E. Oelker, L. Barsotti, S. Dwyer, D. Sigg, and N. Mavalvala, Opt. Express 22, 21106 (2014).
- [29] D. J. Ottaway, P. Fritschel, and S. J. Waldman, Opt. Express 20, 8329 (2012).
- [30] M. Bishof, X. Zhang, M. J. Martin, and J. Ye, Phys. Rev. Lett. 111, 093604 (2013).
- [31] G. K. Campbell, A. D. Ludlow, S. Blatt, J. W. Thomsen, M. J. Martin, M. H. de Miranda, T. Zelevinsky, M. M. Boyd, J. Ye, S. A. Diddams, <u>et al.</u>, Metrologia 45, 539 (2008).
- [32] A. Gelb, Applied optimal estimation, The MIT Press (1974).
- [33] S. Weyers, V. Gerginov, M. Kazda, J. Rahm, B. Lipphardt, G. Dobrev, and K. Gibble, Metrologia 55, 789 (2018).
- [34] J. Levine, Review of Scientific Instruments 83, 020901 (2012).
- [35] J. Yao, T. E. Parker, and J. Levine, Measurement Science and Technology 28, 115004 (2017).
- [36] I. Sesia and P. Tavella, Metrologia 45, S134 (2008).
- [37] W. F. McGrew, X. Zhang, H. Leopardi, R. J. Fasano, D. Nicolodi, K. Beloy, J. Yao, J. A. Sherman, S. A. Schäffer, J. Savory, R. C. Brown, S. Römisch, C. W. Oates, T. E. Parker, T. M. Fortier, and A. D. Ludlow, Optica 6, 448 (2019).
- [38] G. J. Dick, Local oscillator induced instabilities in trapped ion frequency standards, Proceedings of 19th Annu. Precise Time and Time Interval Meeting, Redondo Beach, 1987, U.S. Naval Observatory, 133-147 (1988).
- [39] S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, Review of Scientific Instruments 78, 021101 (2007).
- [40] S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, Phys. Rev. Lett. 99, 153601 (2007).
- [41] H. Leopardi, J. Davila-Rodriguez, F. Quinlan, J. Olson, J. A. Sherman, S. A. Diddams, and T. M. Fortier, Optica 4, 879 (2017).
- [42] T. M. Fortier, A. Bartels, and S. A. Diddams, Opt. Lett. 31, 1011 (2006).