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We investigate the problem of evaluating the output probabilities of Clifford circuits with nonstabilizer prod-

uct input states. First, we consider the case when the input state is mixed, and give an efficient classical algorithm

to approximate the output probabilities, with respect to the l1 norm, of a large fraction of Clifford circuits. The

running time of our algorithm decreases as the inputs become more mixed. Second, we consider the case when

the input state is a pure nonstabilizer product state, and show that a similar efficient algorithm exists to approx-

imate the output probabilities, when a suitable restriction is placed on the number of qubits measured. This

restriction depends on a magic monotone that we call the Pauli rank. We apply our results to give an efficient

output probability approximation algorithm for some restricted quantum computation models, such as Clifford

circuits with solely magic state inputs (CM), Pauli-based computation (PBC) and instantaneous quantum poly-

nomial time (IQP) circuits. Finally, we discuss the relationship between Pauli rank and stabilizer rank.

I. INTRODUCTION

One of the main motivations behind the field of quantum

computation is the expectation that quantum computers can

solve certain problems much faster than classical computers.

This expectation has been driven by the discovery of quan-

tum algorithms which can solve certain problems believed to

be intractable on a classical computer. A famous example of

such a quantum algorithm is due to Shor, whose eponymous

algorithm can solve the factoring problem exponentially faster

than the best classical algorithms we know today [1, 2].

With the advent of noisy intermediate-scale quantum

(NISQ) devices [3], an important near-term milestone in the

field is to demonstrate that quantum computers are capable

of performing computational tasks that classical computers

cannot, a goal known as quantum supremacy [4, 5]. Sev-

eral restricted models of quantum computation have been pro-

posed as candidates for demonstrating quantum supremacy.

These include boson sampling [6], the one clean qubit

model (DQC1) [7, 8], instantaneous quantum polynomial-

time (IQP) circuits [9], Hadamard-classical circuits with one

qubit (HC1Q) [10], Clifford circuits with magic initial states

and nonadaptive measurements [11–13], the random circuit

sampling model [14, 15], and conjugated Clifford circuits

(CCC) [16]. These models are potentially good candidates for

quantum supremacy because they can solve sampling prob-

lems that are conjectured to be intractable for classical com-

puters, and are conceivably easier to implement in experimen-

tal settings.

In contrast to the above models, quantum circuits with Clif-

ford gates and stabilizer input states are not a candidate for

quantum supremacy, because they can be efficiently simulated

on a classical computer using the Gottesman-Knill simula-

tion algorithm [17]. The Gottesman-Knill algorithm, how-

ever, breaks down and efficient classical simulability can be

proved to be impossible (under plausible assumptions) when
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Clifford circuits are modified in various ways, under various

notions of simulation [11–13, 16]. For example, it can be

proved under plausible complexity assumptions that no effi-

cient classical sampling algorithm exists that can sample from

the output distributions of Clifford circuits with general prod-

uct state inputs when the number of measurements made is of

order O(n) [11].

In this paper, we present two new efficient classical algo-

rithms for approximately evaluating the output probabilities

of Clifford circuits with nonstabilizer inputs. Our first algo-

rithm shows that the output distribution of Clifford circuits

with mixed product states can be efficiently approximated,

with respect to the l1 norm, for a large fraction of Clifford cir-

cuits. This algorithm explicitly reveals the role of mixedness

of the input states in affecting the running time of the simula-

tion, which decreases as the inputs become more mixed.

Our second algorithm shows that such an efficient approx-

imation algorithm still exists in the case where the inputs are

pure nonstabilizer states, as long as we impose a suitable re-

striction on the number of measured qubits. This restriction

depends on a magic monotone called the Pauli rank that we

introduce in this paper. This algorithm also explicitly links

the simulation time to the amount of magic in the input states,

and implies that for Clifford circuits with magic input states,

it is possible in certain cases to achieve an efficient classi-

cal approximation of the output probability even when O(n)
qubits are measured. Note that our results do not contradict

the hardness results given in [11], which are about worst-case

hardness, instead of average-case hardness. We also apply our

results to give an efficient approximation algorithm for some

restricted quantum computation models, like Clifford circuits

with solely magic state inputs (CM), Pauli-based computation

(PBC) and instantaneous quantum polynomial time (IQP) cir-

cuits. Finally, we discuss the relationship between Pauli rank

and stabilizer rank.

II. MAIN RESULTS

Let Pn be the set of all Hermitian Pauli operators on n

qubits, i.e., operators that can be written as the n-fold ten-
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sor product of the single-qubit Pauli operators { I,X ,Y,Z }
with sign ±1. The Clifford unitaries on n qubits are the uni-

taries that maps Pauli operators to Pauli operators, that is,

Cln = {U ∈U(2n) : UPU† ∈ Pn,∀P ∈ Pn }. Stabilizer states

are pure states of the form U |0〉⊗n
[18], where U is some Clif-

ford unitary.

Here, we consider Clifford circuits with product input states

|0〉〈0|⊗n ⊗m
i=1 ρi, and measurements on k qubits. If either m or

k is O(logn), the output probabilities can be efficiently sim-

ulated classically by the Gottesman-Knill theorem [11, 17].

However, if both m and k are greater than O(logn), we show

that the output probability of such circuits can still be approx-

imated efficiently with respect to the l1 norm for a large frac-

tion of Clifford circuits.
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FIG. 1. A circuit diagram of Clifford circuits with product state in-

puts, which could be either pure or mixed.

A. Mixed input states

We first consider the case where all ρi are mixed states and

give an efficient classical algorithm to approximate the output

probabilities.

Theorem 1. Consider the class of circuits on n+m qubits

with input state |0〉〈0|⊗n ⊗m
i=1 ρi, Clifford operation C, and

measurements on each qubit in the computational basis. Then

for all α > 0, there exists a classical algorithm that when

given a circuit from the above class, approximates the out-

put probabilities of the circuit up to l1 norm δ in time (n+

m)O(1)mO(log(
√

α/δ )/λ ) for at least a 1− 2
α fraction of circuits

C, where the Clifford operation C is uniformly randomly cho-

sen, and λ = min{λi }i, with λi = 1−
√

2Tr
[

ρ2
i

]

− 1, is a

measure of the mixedness of the input state ρi.

The proof of the Theorem is presented in Section A of the

Supplementary Material [19]. If the parameters α , δ and

λ are constants, then the running time is polynomial in n.

The theorem shows that the efficiency of this classical algo-

rithm increases with the mixedness of the input states. Here

we usually consider the case where m ≥ 1. When m = 0,

the corresponding circuit can be efficiently simulated by the

Gottesman-Knill Theorem [17].

Next, we show that the result in Theorem 1 can be easily

generalized to quantum circuits C which are slightly beyond

Clifford circuits. To this end, we consider the Clifford hi-

erarchy, a class of operations introduced by Gottesman and

Chuang [20] that has important applications in fault-tolerant

quantum computation and teleportation-based state injection.

Let Cl
(3)
n be the third level of the Clifford Hierarchy, i.e.,

Cl
(3)
n = {U ∈U(2n) : UPU† ∈ Cln,∀P ∈ Pn }. There are sev-

eral important gates in the third level of Clifford Hierarchy,

such as the π/8 gate (which we denote T ) and the CCZ gate

[21]. (Note that the set Cl
(3)
n is not closed under multiplication.

For example, T H,T ∈ Cl
(3)
n , but T HT /∈ Cl

(3)
n .) The follow-

ing corollary shows that adding gates in Cl(3) to the circuits in

Theorem 1 does not change (up to polynomial overhead) the

efficiency of the classical simulation.

Corollary 2. Let C = C1 ◦V be a quantum circuit with input

states |0〉〈0|⊗n ⊗m
i=1 ρi, where the gates in the circuit C1 are

taken from the set of Clifford gates on n+m qubits Cln+m and

V is taken from the third level of Clifford hierarchy Cl
(3)
m act-

ing on n+ 1, ...,n+m-th qubits. Assume that each qubit is

measured in the computational basis. Then, Theorem 1 still

holds if we replace C in Theorem 1 with C defined above.

Here, the notation A◦B, where A and B are circuits, refers

to the circuit formed from applying the circuit B followed by

the circuit A. The key property we use here is that the gates in

the third level of the Clifford Hierarchy map Pauli operators

to Clifford unitaries, which makes the proof of Theorem 1

still hold. (See a discussion of this in the Section A of the

Supplementary Material [19]. ) Although Cl
(3)
n is not a group,

the diagonal gates in Cl
(3)
n , denoted as Cl

(3)
n,d , forms a group

[21, 22]. Since the T gate and CCZ gate both belong to Cl
(3)
n,d ,

the result in Theorem 1 still holds for the quantum circuits

C = C1 ◦ C2 where gates in C1 and C2 are chosen from Cn+m

and Cl
(3)
m,d respectively.

Since noise is inevitable in real physical experiments, it is

important to consider the effects of noise in quantum compu-

tation. Recently, it has been demonstrated that if there is some

noise on the random quantum gates [23] or measurements of

IQP circuits [24], then there exists an efficient classical sim-

ulation of the output distribution of quantum circuits. In the

rest of this subsection, we apply our results to two important

subuniversal quantum circuits with noisy input states and give

an efficient classical approximation algorithm for the output

probabilities of the corresponding quantum circuits.

Example 1—First, we consider Clifford circuits with magic

input states. It is well known that the Clifford + T gate set

is universal for quantum computation. By magic state in-

jection, circuits with this gate set can be efficiently simu-

lated by Clifford circuits with magic state |T 〉 inputs, where

|T 〉 = 1√
2
(|0〉+ eiπ/4 |1〉). It has been shown that postCM =

postBQP [13], and thus output probabilities are #P-hard ap-

proximate up to some constant relative error [25–27]. How-

ever, if there is some independent depolarizing error acting on

each input magic state, e.g., the input state on each register is

(1−ε)|T 〉〈T |+ε I
2
, then Theorem 1 implies directly that there

exists a classical algorithm to approximate the output proba-

bility up to l1 norm δ in time nO(log(1/δ )/ε) for a large fraction

of the CM circuits with noisy inputs.

Example 2—IQP circuits have a simple structure with in-

put states |0〉⊗n
and gates of the form H⊗nDH⊗n, where the

diagonal gates in D are chosen from the gate set {Z,S,T,CZ }.

It has been shown that postIQP= postBQP [9] and thus, the
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output probabilities are #P-hard to approximate up to some

constant relative error [25–27]. Also, if there is some depolar-

izing noise acting on each input state |0〉, i.e., each input state

is a mixed state (1− ε)|0〉〈0|+ ε I
2
, then if we follow a similar

proof to that of Theorem 1, we find that there exists a clas-

sical algorithm to approximate the output probability up to l1
norm δ in time nO(log(1/δ )/ε) for a large fraction of such IQP

circuits. (The proof is presented in Section B of the Supple-

mentary Material [19] in detail, which depends on the output

distribution of IQP circuits in Section C of the Supplementary

Material [19]. )

B. Pure nonstabilizer input states

As we can see, the running time in Theorem 1 blows up if

the input state ρi is pure. Here, we consider the case where all

ρi are pure nonstabilizer states, that is Clifford gates with the

input state |0〉⊗n ⊗m
i=1 |ψi〉.

For pure states |ψ〉, the stabilizer fidelity [28] is defined as

follows

F(ψ) = max
|φ〉

|〈φ |ψ〉|2, (1)

where the maximization is taken over all stabilizer states.

Here, we define

µ(ψ) := 2(1−F(ψ)). (2)

It is easy to see that µ(ψ)= 0 iff |ψ〉 is a stabilizer state. Thus,

µ measures the amount of magic of a state. Since each |ψi〉 is

not a stabilizer state, it follows that µ(ψi)> 0.

Next, let us introduce the Pauli rank for pure single qubit

states |ψ〉. First, we write a pure state |ψ〉 in terms of its Bloch

sphere representation |ψ〉〈ψ | = 1
2 ∑s,t∈{0,1} ψstX

sZt , where

ψ00 = 1 and |ψ01|2 + |ψ10|2 + |ψ11|2 = 1. We define the Pauli

rank χ(ψ) to be the number of nonzero coefficients ψst . By

the definition of Pauli rank, it is easy to see that 2≤ χ(ψ)≤ 4,

and that |ψ〉 is a stabilizer state iff χ(ψ) = 2. Since each input

state |ψi〉 is a nonstabilizer state, it follows that χ(ψi) = 3 or 4.

For example, for the magic state |T 〉, the corresponding Pauli

rank χ = 3. For n-qubit systems, the Pauli rank serves as a

good candidate for a magic monotone as it is easier to com-

pute than other magic monotones which require a minimiza-

tion over all stabilizer states [29–31]. (See a discussion of

Pauli rank for n-qubit systems in Section D3 of the Supple-

mentary Material [19].

Theorem 3. Consider the class of circuits on n+m qubits

with input state |0〉⊗n ⊗m
i=1 |ψi〉, Clifford operation C, and

measurements on k qubits in the computational basis with

k ≤ n+m −∑m
i=1 log2(χ(ψi)/2) and χ(ψi) being the Pauli

rank of ψi. Then for all α > 0, there exists a classical al-

gorithm that when given a circuit from the above class, ap-

proximates the output probability up to l1 norm δ in time

(n + m)O(1)mO(log(
√

α/δ )/µ) for at least a 1 − 2
α fraction of

Clifford circuits C, where the Clifford operation C is uniformly

randomly chosen, and µ := mini µ(ψi) and µ(ψi) is defined

as (2).

The proof is presented in Section D of the Supplementary

Material [19]. If the parameters α , δ and µ are constants, then

the running time is polynomial in n. The maximal number

of allowed measured qubits in this algorithm decreases with

the amount of the magic in the input states, which is quanti-

fied by the Pauli rank. A curious property of our algorithm is

that its running time decreases with the amount of magic of

the input states quantified by fidelity, contrary to the intuition

that quantum circuits with more magic are harder to simulate.

Similarly, if the quantum circuits are slightly beyond the Clif-

ford circuits, for example, C = C1 ◦V where the gates in C1

are Clifford gates in Cln+m and V is some unitary gate in the

third level of the Clifford Hierarchy Cl
(3)
m , then the result in

Theorem 3 still holds.

Combining Theorem 1 and 3, we have the following corol-

lary for any product input state:

Corollary 4. Consider the class of circuits on n + m1 +
m2 qubits with input states |0〉〈0|⊗n ⊗m1

i=1 ρi ⊗m2
j=1 |ψ j〉〈ψ j|,

Clifford operation C, and measurements on k qubits in

the computational basis, where each ρi is a mixed state,

each |ψ j〉 is a pure nonstabilizer state, k ≤ n +m1 +m2 −
∑

m2
j=1 log2(χ(ψi)/2) and χ(ψi) is the Pauli rank of ψi. Then

for all α > 0, there exists a classical algorithm that when

given a circuit from the above class, approximates the out-

put probability with respect to the l1 norm δ in time (n+m1+

m2)
O(1)(m1 +m2)

O(log(
√

α/δ )/ε) for at least 1− 2
α fraction of

Clifford circuits C, where the Clifford operation C is uniformly

randomly chosen, ε = min{λ ,µ } and λ := mini λi, µ :=
min j µ(ψ j).

Now, let us apply our results to some restricted quantum

computation models, such as Clifford circuits with solely

magic state inputs (CM) and Pauli-based measurement (PBC),

which gives an efficient simulation of O(n) measurement with

high probability.

Example 3—Theorem 3 implies the following result: for

Clifford circuit C with input states |T 〉⊗n and measurement on

k qubits in computational basis with k ≤ (1− log2(3/2))n ≈
0.415n, there exists a classical algorithm to approximate the

output probability up to l1 norm δ in time nO((2+
√

2) log(
√

α/δ ))

for at least 1 − 2
α fraction of Clifford circuits C, where

µ(|T 〉) = 1− 1√
2

and χ(|T 〉) = 3. If we choose the param-

eters α and δ to be constants, then the corresponding running

time of this classical simulation is poly(n), which implies that

the Clifford circuit with magic input states and measurements

on 0.415n qubits can be simulated efficiently on a classical

computer with high probability. Note that our results do not

contradict the hardness results given in [13], which are about

the average-case hardness with measurements on n qubits.

Example 4—A Pauli-Based Computation (PBC) is defined

as a sequence of measurement of some Pauli operators Pi ∈Pn,

where the measurement outcome is (−1)σi with σi ∈ {0,1}
and the Pauli operators {Pi } are commuting with each other.

Here, the initial state is |T 〉 (or |H〉 = cos π
8
|0〉+ sin π

8
|1〉,

which is equivalent to |T 〉 up to Clifford unitary [32].).

After k steps, the probability of outcome P(σ1, . . . ,σk) =

〈T⊗n|Π |T⊗n〉, where Π = 2−k ∏k
i=1(I +(−1)σiPi). Note that
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PBC was considered in the fault-tolerant implementation of

quantum computation based on stabilizer codes, where the

stabilizer codes provide a simple realization of nondestruc-

tive Pauli measurements [33, 34]. Besides, it has been proved

that the quantum computation based on Clifford+T circuits

can be simulated by PBC [32]. Thus, this implies that the

output probability P(σ1, . . . ,σk) is #P-hard to simulate. It has

been shown that any PBC on n qubits can be classically sim-

ulated in 2cn poly(n) time with c ≈ 0.94 [32]. Here, Theorem

3 implies that if we choose α to be some constant and the

measurement steps k ≤ (1− log2(3/2))n≈ 0.415n, then there

exists a classical algorithm to approximate the output proba-

bility up to l1 norm δ in time nO((2+
√

2) log(1/δ )) for a large frac-

tion of PBC. Moreover, if the approximation error δ is some

constant, then the running time is poly(n), which implies that

the output probability of PBC after 0.415n measurement steps

can be simulated efficiently on a classical computer with high

probability.

At the end of this work, let us discuss the relationship be-

tween the Pauli rank we defined here and the stabilizer rank

[29, 32]. Given a pure state |ψ〉, there are two ways to write

the given pure state as a linear combination of stabilizer states:

one is written in density matrix form and the other is written in

vector state form. Thus, there are two definitions of stabilizer

rank,

χD(ψ) = min{R : | ψ〉〈ψ |=
R

∑
i=1

xi|φi〉〈φi|,φi is a stabilizer state} ,

χV (ψ) = min{R : | ψ〉=
R

∑
i=1

xi | φi〉,φi is a stabilizer state} .

Both stabilizer ranks χD and χV play an important role in the

classical simulation of quantum circuits, which usually ap-

pears in the running time of classical algorithm [29, 32]. How-

ever, whether there exists an exponential lower bound for χD

and χV for |T⊗n〉 is still unknown to our knowledge. Note that

if this statement is false, then it follows that constant-depth

Clifford+T circuits can be classically simulated in subexpo-

nential time [32]. Here, we find that the Pauli rank and stabi-

lizer rank have the following relationship for any n-qubit pure

state |ψ〉,

χD(ψ)≥ χ(ψ)

2n
(3)

based on the Pauli rank of |T⊗n〉 is equal to 3n, we can give

an exponential lower bound χD(|T⊗n〉)≥
(

3
2

)n
, see the Table

I. The details of the proof is presented in Section D3 of the

Supplementary Material [19].

|T⊗n〉 χD χV

Size ≥
(

3
2

)n ?
≥ 2Ω(n)

TABLE I. Here we show that the stabilizer rank χD for |T⊗n〉 is lower

bounded by ( 3
2 )

n. However, it is still unknown whether χV has an

exponential lower bound.

III. CONCLUSION

In this work, we investigated the problem of evaluating the

output probabilities of Clifford circuits with nonstabilizer in-

put states. First, we provided an efficient classical algorithm

to approximate the output probability of the Clifford circuits

with mixed input states and showed that the running time

scales with the increase in the purity of input states. Second,

we showed that a modification of this algorithm gives an effi-

cient classical simulation for pure nonstabilizer states, under

some restriction on the number of measured qubits that is de-

termined by the Pauli rank of the input states. The Pauli rank

we introduced in this work can be regarded as a good candi-

date for a magic monotone. We showed that these two results

have several implications in other restricted quantum compu-

tation models such as Clifford circuits with magic input states,

Pauli-based computation and IQP circuits, which sheds new

light on the classical simulation of these restricted quantum

computational models. We also discuss the relationship be-

tween Pauli rank and stabilizer rank, and give an exponential

lower bound on stabilizer rank χD for |T⊗n〉 .
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