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Inserting a rigid object into a soft elastic tube produces conformal contact between the two,
resulting in contact lines. The curvature of the tube walls near these contact lines is often large
and is typically regularized by the finite bending rigidity of the tube. Here, it is demonstrated
using experiments and a Föppl–von Kármán-like theory that a second, independent, mechanism
of curvature regularization occurs when the tube is axially stretched. In contrast with the effects
of finite bending rigidity, the radius of curvature obtained increases with the applied stretching
force and decreases with sheet thickness. The dependence of the curvature on a suitably rescaled
stretching force is found to be universal, independent of the shape of the intruder, and results
from an interplay between the longitudinal stresses due to the applied stretch and hoop stresses
characteristic of curved geometry. These results suggest that curvature measurements can be used
to infer the mechanical properties of stretched tubular structures.

The mechanics of thin sheets (or plates) is determined
by the interplay between bending and stretching [1–3].
As the sheet is deformed from its rest state, it bends out
of its plane, but it must also stretch in its own plane, in
order to accommodate its new shape. Bending rigidity B
prevents the sheet from turning too sharp a corner, so it
is the ratio of B to some other scale – such as one involv-
ing interfacial tension [4–6], an external pressure [3, 7],
or gravity [8, 9] – that sets the size of the smallest ridge
[1], or the wavelength of wrinkles [2]. Shells are sheets
with curved rest shapes, such as a sphere or a cylinder.
This introduces non-trivial differential geometry as well
as extra length scales (e.g. the rest radius of a cylinder)
that govern the buckling [10, 11] and wrinkling [7, 12]
of shells (see also [13]). The competition of bending and
stretching energies also determines the geometry of crys-
talline closed membranes [14], multicomponent vesicles
(line energies also contribute) [15, 16], pinched tubes [17]
and indented microtubules [18].

In this Letter we discuss a mechanism of generat-
ing out-of-plane curvature through externally applied in-
plane forces, entirely independent of bending energy. We
will focus on soft cylindrical shells (i.e. tubes), which in-
troduces a high degree of anisotropy, as they are curved
in the azimuthal direction but flat along the axis. In par-
ticular, an object can be confined inside a tube without
applying any external force, in which case a sharp corner
forms at the geometrical intersection between the cylin-
der and the intruder [19]. We will show that the subse-
quent application of an axial stretching force F regular-
izes this corner due to a combination of the resulting axial
strain and geometric constraints, even without invoking
any bending rigidity. The resulting length scale depends
on the external force and bears some resemblance with
the “elastic capillary length” introduced previously in the
context of wrinkling [3, 7].

FIG. 1. (a) Sketch of the setup showing an axisymmetric
intruder in a tube (solid lines) that is cylindrical (radius a)
in its undeformed reference configuration (dashed lines). The
tube is stretched by applying equal and opposite forces per
length of magnitude f = F/(2πa) at the tube ends. The
arclength coordinate s in the undeformed configuration is a
material label. The intersection of the undeformed tube and
the intruder defines a geometric intersection length 2zi while
the region of contact (highlighted in green) has axial extent
2zc. (b)–(e) Experimental pictures of the shape of the tube of
radius a = 3.25 mm around an intruder of radius R0 = 6.35
mm for increasing value of the applied force F . Scale bar is
10 mm.

We consider a thin-walled elastic tube that in its un-
deformed reference configuration has a cylindrical shape
with radius a, into which is introduced a larger axisym-
metric intruder of maximum radius R0 > a (Fig. 1a)
[19–21]. The coordinate s measures the arclength in the
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reference state (Fig. 1a) and thus labels material points
[13]. The tube may additionally be acted on by a trac-
tion (force per area) σ(s) along its surface and forces per
length ±f on its circular rims (Fig. 1a).

The external forces and the intruder (which contacts
the tube over a finite area) together deform the tube
walls. Figure 1b–e shows images of a spherical intruder
(304 stainless steel ball bearing, radius R0 = 6.35mm) in
a commercial cylindrical latex balloon (rest radius a =
3.25mm, thickness b = 320µm), clamped on one side and
attached to the load cell of a universal testing machine
(Instron) on the other. We record the tensile force F as
the cylindrical tube is stretched along its axis. The shape
of the deformed tube is imaged with a high-resolution
camera. Experiments with non-spherical intruders are
discussed near the end of this Letter.

As is evident in Figs. 1b–e, stretching the tube in-
creases the length scale over which the tube relaxes to
its cylindrical shape. In particular, in the absence of an
applied stretch, a kink forms at the geometric intersec-
tion of the intruder with the undeformed tube, and is
gradually smoothened as the tube is stretched. Simul-
taneously, the contact area between the soft tube and
the rigid intruder decreases. We show that this curva-
ture regularization is a consequence of axial strains of
the tube being coupled to radial stresses through cylin-
drical geometry, independent of bending rigidity.

We model an intruder inside a cylindrical tube using a
nonlinear shell theory analogous to the Föppl–von Kár-
mán (FvK) theory for plates [22], applicable to small
strains and moderate rotations of the elastic tube sur-
face. In this theory, out-of-plane deformations and in-
plane stretching are treated within linear elasticity, but
stretching is coupled geometrically to potentially large
deformations of the shell from its rest state, resulting in
a strongly nonlinear theory. Defining the displacement
u(s) = ur(s)er + uz(s)ez and following the shell theory
developed in Audoly and Pomeau [13] (p. 447), the de-
formation of the tube is governed by the stress balance

d(Nst)
ds − Nθ

a
er + σ = 0, (1)

where t(s) = u′r(s) er + ez approximates the tangent to
the deformed surface (primes denotes a derivative with
respect to the argument) and Ns(s) and Nθ(s) are, re-
spectively, the axial and azimuthal diagonal elements
of the in-plane stress tensor (with units of force per
length). In particular, Nθ is the hoop stress charac-
teristic of cylindrical geometry. The bending rigidity
of the tube walls has been neglected in (1) but will be
reintroduced later in the discussion. The radial compo-
nent of (1) has the form of a membrane equation [22],
where the second term resembles the capillary pressure
of a fluid cylinder [23], with the hoop stress Nθ play-
ing the role of surface tension. Expanding for small
wall thickness b � a (Young’s modulus E, Poisson’s ra-
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FIG. 2. (a) Experimental profiles obtained with a spherical
intruders of dimensional radius R0/a = 2.44. The dimen-
sionless force F is coded in color. (b) Exponential decay of
the radial displacement ur − u∞r with the distance from the
contact point S − Sc for increasing dimensionless stretching
forces. Solid lines are experiments for F = 0.13, 0.22, 0.27,
0.32, 0.38, 0.46 and 0.55, and symbols are theoretical predic-
tions for F = 0.1, 0.2, 0.25, 0.3, 0.4, 0.55 and 0.8.
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[13]. In the limit
a → ∞ one recovers the standard plate equations, and
the hoop stress drops out of the description. We focus
on the case relevant to our experiments, viz. no tractions
act on the non-contacting part of the tube surface and
axial stretching forces act at the tube ends [±f = ±ezf ,
f = F/(2πa)]; cf. Fig. 1a.
Figure 2a presents the shapes of such tubes obtained

experimentally. The shapes are color-coded using the
value of the dimensionless stretching force defined by
F ≡ F/(2πEab) where E = 1.29MPa is the Young mod-
ulus of the latex tube. The shape of the tube depends
both on the shape of the intruder, given by r = R(z),
and the applied stretching force per circumference f . In
experiments, it is natural to measure the radial displace-
ment as a function of the deformed arclength S instead
of the undeformed coordinate s. The tube loses con-
tact with the intruder at two contact lines at s = ±sc
(S = ±Sc; z = ±zc) that depend on F . Our experimen-
tal data suggest an exponential relaxation of the radial
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displacement ur − u∞r [where u∞r = ur(s → ∞)] with
distance from the contact point S − Sc (lines in Fig. 2b)
over a length scale that increases with the applied force.

To predict this relaxation length theoretically, it is con-
venient to first rescale all lengths by a and define s̃ = s/a,
s̃c = sc/a, ũ(s̃) = u(s)/a, R̃0 = R0/a etc., where the
contact line location s̃c must be found as part of the
solution. Below, we consider objects symmetric about
s = z = 0 and focus on s ≥ 0, although we later show
that our experimental results are robust against this as-
sumption. Dropping tilde accents for convenience, the
dimensionless form of (1) over the non-contacting part of
the tube surface (s > sc), where σ = 0, is

Fu′′r − ur − νF = 0,

u′z + 1
2 (u′r)

2 + νur = (1− ν2)F ,

(2a)

(2b)

where we have utilized equilibrium at the end of the tube
[in dimensional terms, Ns(s → ∞) = F/(2πa)]. The
system (2) admits the general decaying solutions

ur(s > sc) = −νF + C e−(s−sc)/
√
F ,

uz(s > sc) = D + (s− sc)F + νC
√
Fe−(s−sc)/

√
F

+ C2

4
√
F

e−2(s−sc)/
√
F ,

(3a)

(3b)

where C, D and sc are yet-undetermined constants.
Thus, according to (3a), the tube relaxes from the con-
tact point over a dimensionless length scale

√
F , to a

cylindrical shape of radius 1 − νF . This length scale is
analogous to the “elastic capillary length” for spherical
shells [3, 7], but where instead of the intrinsic pressure
Nθ/a produced by the applied force, the pressure is im-
posed from the outside.

The unknown constants in (3) are determined by the
solution in the contact region (0 ≤ s ≤ sc). Since
z(s) = s + uz(s) is the axial coordinate of a material
point s in the deformed state, contact is defined by the ge-
ometric constraint δ(z(s)) ≡ R(z(s))− 1 = ur(s). Then,
continuity of displacement and tangential stress leads to
the condition (see Supplementary Material)

δ′ = −2
√
F(δ + Fν)

F (2− 4δν + F (2− 3ν2))− δ2 at z = zc, (4)

which is an algebraic equation in z whose solution deter-
mines the axial location zc of the contact point. The
constraint of contact is enforced physically by a con-
tact stress σ(s) exerted by the intruder. Assuming
negligible friction, σ(s) = pc(s) n for |s| < sc, where
n(s) = er − u′r(s)ez approximates the normal to the
surface. Substituting this expression for σ into (1)
and using the geometric constraint leads to a single dif-
ferential equation for uz(s), which we integrate from
s = 0 (using uz(0) = 0), until the solution satisfies
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FIG. 3. (a) Theoretical prediction of the tube shape for dif-
ferent stretches F with ν = 1/2 and a spherical intruder with
R0/a = 1.5. As F increases, the tube relaxes more gradu-
ally to cylindrical shape, while the size of the contact region
shrinks. The curvature at the contact point diverges as F−1/2.
The dashed line indicates the undeformed shape of the tube.
(b) Theoretical prediction (in dashed blue lines) and exper-
imental tube shape (in solid black lines) for R0/a = 1.95
and a small (F = 0.001) and large (F = 0.5) dimensionless
stretching force. (c) Deviation of the contact length zc from
its no-stretch value zi as a function of the applied stretching
force F . Symbols are numerical results for spherical intrud-
ers of different radii [R0 = 1.1 (circles); R0 = 1.5 (triangles);
R0 = 2.0 (squares)] and with different Poisson’s ratio [ν = 0.5
(filled); ν = 0 (open)].

zc = sc + uz(sc), thus identifying sc (see Supplemen-
tary Material). This procedure self-consistently deter-
mines ur(s), uz(s), the contact pressure pc(s), the con-
tact point sc and the coefficients C and D through the
displacement and stress-continuity relations, completing
the solution to the problem along the entire length of
the tube. The dimensionless deformed arclength is then
computed as S(s) =

∫ s

0

√
(1 + u′z(τ))2 + (u′r(τ))2 dτ .

Typical numerical results for a spherical R(z) are plot-
ted in Fig. 3a, showing both the shape of the tube sur-
face and the location of the contact point for different
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FIG. 4. Decay exponent λ versus F for spherical intruders
with radius R0/a = 1.46 (squares), 1.95 (circles) and 2.44
(diamonds), (axisymmetric) egg-shaped intruders (M) with a
half-width w/a = 1.96 and (asymmetric) almond-shaped in-
truders (O) with w/a = 2.35. Numerical results for spheres
(solid curves; ν = 1/2, R0 matched with experiments) are in-
sensitive to changes in intruder shape and size, and are in good
agreement with the data. Both the experimental and the nu-
merical results collapse onto the theoretical result (5) [dashed
curve]. The horizontal dotted line at λ =

(√
2β
)−1 ≈ 3.9

corresponds to the bending-dominated limit with F → 0.

F . As F decreases, the length over which the tube
relaxes becomes shorter [cf. (3)], and the solution re-
laxes to a cylindrical shape more rapidly from the con-
tact point. In the limit F → 0 a corner forms at the
ring of intersection between the sphere and the tube
(r = 1, z = zi =

√
R2

0 − 1), as shown Fig. 3a. In Fig. 3b
we compare the predictions of our theory with experi-
mental profiles for R0/a = 1.95 and two dimensionless
forces (F = 0.001 and F = 0.5), finding excellent agree-
ment. Figure 3a also shows that stretching the tube low-
ers its contact area with the intruder. This is quanti-
fied in Fig. 3c, where the position of the contact line
zc [obtained by solving (4)] relative to its unstretched
value zi is plotted as a function of F . Analyzing (4) for
δ0 = R0 − 1 � 1 and F � 1 shows that zi − zc ∼ F1/2,
up to corrections involving δ0 (Fig. 3c).
The experimentally observed exponential decay of the

radial displacement with the deformed arclength, ur −
u∞r ∝ exp {−λ (S − Sc)}, is recovered by our numeri-
cal solutions (symbols in Fig. 2). The slope of an ex-
perimental or theoretical curve on this plot defines the
decay constant λ for a given F . The extracted λ val-
ues, representing (dimensionless) inverse decay lengths,
are plotted against F in Fig. 4. Experimental decay ex-
ponents are shown for three different spherical intruder
radii R0/a = 1.46 (squares), 1.95 (circles) and 2.44 (dia-
monds) and are in good agreement with numerical results

(solid curve) without fitting parameters.
Interestingly, our numerical results are insensitive to

the intruder radius; calculated curves in Fig. 4 for dif-
ferent R0/a are essentially identical. This is understood
from the relation between the deformed and the unde-
formed coordinates: at large distances from the intruder,
u′r(s)� u′z(s) ∼ F , which leads to the asymptotic result
S − Sc ∼ (1 + F)(s − sc). We note that the (1 + F)
is simply the stretch of the “bare” tube without an in-
truder. Substituting this relationship into (3a) identifies
the universal decay exponent

λ ≈ 1
(1 + F)

√
F

=
√

2πEab/F
1 + F/(2πEab) . (5)

The dimensional decay length is a/λ which for small
forces yields the length scale

√
Fa/(Eb). The above re-

sult, plotted in Fig. 4 as a dashed curve, is practically
indistinguishable from our numerical results for spheri-
cal intruders. Equation (5) also predicts insensitivity to
the intruder size, shape and the Poisson ratio of the ma-
terial. All of these predictions are verified by numerical
solutions for spheroids of different aspect ratio and for
different values of ν. In all cases, the computed results
for λ are virtually identical to each other and to (5), even
as zc depends on both R(z) and ν (cf. Fig. 3c).
The robustness of (5) is further confirmed by experi-

ments with non-spherical intruders. Among others, these
include ovoid shapes that break z-symmetry and almond
shapes that also break axisymmetry. Measured decay
exponents for these shapes (maximal half-widths w) are
plotted in Fig. 4 and collapse onto the universal curve (5)
with no adjustable parameters; other shapes are shown in
Supplementary Material. For intruders above a certain
size (typically R0/a & 3), the measured λ deviate from
our theory by an O(1) prefactor, although the qualitative
dependence on F remains unchanged. This is attributed
to the nonlinear response of the latex sheet to large [i.e.
O(1)] strains (see Supplementary Material).
At very small F , the finite bending stiffness B =
Eb3

12(1−ν2) of the tube comes into play. Including a bending
traction σb ≈ Bu′′′′r (s) er in (1) [13] adds a term β4u′′′′r

to the right side of (2a), where β =
(

(b/a)2

12(1−ν2)

)1/4
. In

the limit F → 0, curvature around contact is regular-
ized by a balance between bending and hoop stresses,
giving ur ∝ exp{−

√
± i (s − sc)/β} and identifying λ ≈

(
√

2β)−1. This gives λ ≈ 3.9 for our experimental param-
eters, consistent with our measurements at small F (cf.
Fig. 4), though we caution that the data are sensitive
to noise in this limit. Axial strains dominate bending in
setting the curvature for

√
F & β (i.e. F & Eb2), cor-

responding to a linear strain & O(b/a). Thus, a small
amount of axial strain suffices to overwhelm bending as
the dominant physical mechanism limiting out-of-plane
curvature.
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The features discussed here arise generically due to
the curved cylinder geometry subject to an applied ax-
ial stretch and geometric constraints that include (but
are not limited to) contacts with enclosed objects. Such
stretching-generated curvatures may be observable at the
microscale and could be used to infer the mechanics of
membrane tethers [6] and microtubules [18, 24] by vary-
ing the applied tensile load. At larger scales, the modifi-
cation of radial geometry by axial forces are also likely to
have an influence on the movement of fluid and enclosed
solid objects through soft tubes [19, 20] due to peristal-
sis or external forces. The ability to produce out-of-plane
curvatures with externally applied in-plane tensile strains
may also provide a new handle to dynamically tune the
geometry of engineered soft surfaces.

In conclusion, by considering the elastic trapping of ob-
jects inside a cylindrical tube of radius a and thickness
b, we have investigated a mechanism of curvature regu-
larization in soft curved systems that is produced by in-
plane tension. From the competition between hoop stress
and longitudinal stretching arises a novel length scale√
Fa/(Eb), which decreases with increasing sheet thick-

ness, opposite the usual elastic cut-off scale [1], which
smooths the sheet with increasing thickness. The geo-
metric underpinnings of this curvature production mech-
anism suggests its broad applicability to naturally curved
soft shells under axial strains.
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