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We study quantum information scrambling, specifically the growth of Heisenberg operators,
in large disordered spin chains using matrix product operator dynamics to scan across the
thermalization-localization quantum phase transition. We observe ballistic operator growth for
weak disorder, and a sharp transition to a phase with sub-ballistic operator spreading. The critical
disorder strength for the ballistic to sub-ballistic transition is well below the many body localization
phase transition, as determined from finite size scaling of energy eigenstate entanglement entropy
in small chains. In contrast, we find that the transition from sub-ballistic to logarithmic behavior
at the actual eigenstate localization transition is not resolved in our finite numerics. These data are
discussed in the context of a universal form for the growing operator shape and substantiated with
a simple phenomenological model of rare regions.

It has long been known that disorder can slow or arrest
quantum motion [1], leading to a localized state. Re-
cently it was understood that localization can survive
even strong interactions, a phenomenon dubbed many-
body localization (MBL) [2–4]. More precisely, there is
a quantum phase transition in interacting systems from
a thermalizing phase to a localized phase with increasing
disorder. The phase and phase transition have been in-
tensely studied (e.g., [5–20]), and there is a proof, given
plausible assumptions, of the existence of MBL in one-
dimensional spin chains with local interactions [21, 22].

In this work we are particularly concerned with the
quantum phase transition (or transitions) that take a
one-dimensional disordered system from a thermalizing
phase to a localized phase [9, 12, 23–29]. It is natural
to study this phase transition via dynamics [6–8, 10], be-
cause eigenstate based numerics are difficult to scale to
large system sizes and because dynamical properties are
accessible in experiments [30–32]. We study a dynamical
quantity related to quantum information scrambling, the
squared commutator [33–36].

Consider two local operators, W and V , in a one-
dimensional spin chain, separated by a distance x. The
squared commutator probes the extent to which V fails
to commute with the time evolved Heisenberg operator
W (t) = eiHtWe−iHt. It is defined as the expectation
value of the absolute value squared of the commutator of
the W (t) and V ,

C(x, t) = 〈[W (t), V ]†[W (t), V ]〉. (1)

It is closely related to the out of time ordered corre-
lator (OTOC), F (t) = 〈W †(t)VW †(t)V 〉. OTOCs are
currently receiving attention as a diagnostic of quantum
chaos [33, 37–39], including experimental proposals [40–
43] and early experiments measuring OTOCs [44–47]. In
fact, [46] measured OTOCs to detect localization in NMR
spin systems.

The squared commutator starts at zero for initially
separated W and V , and then grows as the operator

W (t) spreads and overlaps with the location of V . In the
absence of disorder, C(x, t) typically grows ballistically,
leading to an emergent linear light cone with butterfly
velocity vB . On the other hand, disorder can severely
arrest the growth of C(x, t), a manifestation of localiza-
tion. It has been argued that MBL is characterized by
an extensive number of local integrals of motion [11–14],
leading to an emergent logarithmic light cone [48]. Sim-
ilarly, it was recently shown that the disorder averaged
C(x, t) exhibits a logarithmic light cone with vB = 0 in
the MBL phase [49–55].

In this letter we study operator dynamics across the
entire thermal-to-MBL phase diagram, with a particular
focus on the thermal side of the MBL eigenstate tran-
sition. This regime has attracted interest in the con-
text of rare region effects which can slow down transport
well before the MBL transition [15, 16, 56, 57]. One
interesting question is whether the butterfly velocity sur-
vives arbitrarily weak disorder [58, 59]. It is challenging,
since, for example, strong disorder RG [55] applies only
in the MBL phase and state-of-the-art exact diagonaliza-
tion is still limited to small sizes [58]. We use a recent
t-DMRG based matrix product operator method to cal-
culate dynamics of local Heisenberg operators [60] (see
also [61, 62]) for larger system sizes (O(200) spins) and
longer times than previously possible.

First, we observe a weak disorder phase with ballistic
operator spreading (vB 6= 0) as well as a sharp transition
to a sub-ballistic phase (vB = 0), at a disorder strength
well below the putative MBL transition. This transition
is characterized by a continuous vanishing of vB and an
apparent divergence of the wavefront broadening. Sec-
ond, we study the variability of operator growth from
one disorder realization to another, which also charac-
terize the ballistic to sub-ballistic transition independent
of the fitting procedure. This is also a clear numeri-
cal demonstration of rare regions which is only possi-
ble because of the large system size. Observations from
the variability of the scrambling data motivate a sim-
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FIG. 1. Phase diagram of operator spreading in disordered
interacting spin systems with different disorder models. The
Heisenberg Hamiltonian is defined using Pauli operators in-
stead of spin-1/2 operators, so the W normalization is twice
as large relative to the spin-1/2 convention.

ple phenomenological model of rare regions, from which
we analytically substantiate the presence of the ballistic
phase. Together these numerical observations reveal a
rich dynamical phase diagram for disordered spin models
(Fig. 1). Comparing to previous studies, we find that the
loss of ballistic operator spreading occurs at a larger dis-
order strength than the diffusive to sub-diffusive transi-
tion in spin transport, indicating at least four non-trivial
dynamical regimes [15, 16, 56, 57, 59, 63].

Model – For concreteness, we consider two one-
dimensional spin chain models:
1. Mixed field Ising model with σz disorder

H = −J
L−1∑
r=1

ZrZr+1 − hx
L∑
r=1

Xr −
L∑
r=1

hz,rZr (2)

2. Heisenberg model with σz disorder,

H = −J
L−1∑
r=1

(XrXr+1 + YrYr+1 + ZrZr+1)−
L∑
r=1

hz,rZr.

(3)
Here Xr, Yr, Zr are the local Pauli operators. For the
mixed field Ising model, we choose the parameters J = 1,
hx = 1.05 and hz,r = 0.5. For the Heisenberg model, we

choose the parameters J = 1 and hz,r = 0. For each
spin chain we consider two different disorder probability
distributions, box and Gaussian. For the box disorder,
we draw the hz,r fields uniformly at random from the in-
terval [−W,W ], with W being the disorder strength. For
Gaussian disorder, the hz,r fields are Gaussian random
variables with standard deviation (SD) W . The parame-
ters for the mixed field Ising model have been chosen so
that the W = 0 limit is strongly chaotic [60]. The Heisen-
berg model with box disorder has been extensively stud-
ied for chains with L . 30 spins, and it has been shown
that the thermal-MBL transition occurs at W & 7 [17].
We consider all these models to elucidate the robustness
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FIG. 2. Plot of the contours of the averaged log(C), for the
Mixed Field Ising model with Gaussian disorder. (averaged
over ∼ 200 disorder realizations, for three disorders, W = 0.2
(ballistic), W = 1.0 (intermediate) and W = 3.8 (logarith-
mic). Bond dimension is 32. Convergence with bond dimen-
sion is discussed in the Supplemental Material. Fluctuations
away from the disorder averaging are discussed in Fig. 4 and
in the corresponding section.)

of the intermediate regime, and also to understand the
role of disorder distribution on rare region effects.
Method – Our technique is a real-time tensor network

method for operator dynamics [60]. Studying real-time
quantum dynamics using tensor network methods, such
as state-based TEBD or t-DMRG methods [7, 8, 64–67],
is typically limited to early times, because the entangle-
ment of the state is upper-bounded by log(χ), where χ is
the bond dimension of the matrix product state (MPS)
[7]. However, in a recent paper [60], some of us have
shown that by going to the Heisenberg picture, one can
reliably access a much wider space-time region using dy-
namics of matrix product operators (MPO) because of
the entanglement structure of the Heisenberg operator.
The complexity of the operator only builds up within the
lightcone and is not essential for studying the dynami-
cal property of the wavefront. As a result, the butterfly
velocity and the broadening of the wavefront can be ac-
curately extracted from TEBD simulation on Heisenberg
operators in the matrix product form with modest bond
dimension.

We simulated the squared commutator in the infinite
temperature Gibbs ensemble,

C(r − r′, t) =
1

2L
tr([Xr(t), Xr′ ]

†[Xr(t), Xr′ ]) (4)

for spin chains of length L = 201 with maximal time of
order 50− 100, in the units of J−1 = 1. A small Trotter
step of δt = 0.0025 is used to obtain high numerical pre-
cision. For each disorder, we consider around 200 − 500
disorder realizations and average log(C) over the different
realizations. This ensures that rare disorder realizations
which could localize the operator growth are not over-
whelmed by the ballistic samples during the averaging
process. Fig. 2 shows light cone obtained from averaging
C(x, t) for different disorders, representing each phase in
Fig. 1. We discuss convergence of the numerical proce-
dure in Sec I of S.M..

We detect the transition by extracting the butterfly
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FIG. 3. a) The extracted broadening coefficient p and butter-
fly velocity vB are plotted for different sized systems, versus
disorder. Note, vB goes to zero and p has a peak at around
disorder W ∼ 0.5 with small finite-size effect. Errorbars ob-
tained from the 95% confidence interval of fitting, are shown
for the largest system size. b) Finite-size scaling on half-
chain entanglement entropy estimates that the localization
transition occurs at Wc ∼ 2.21. The data collapse to the de-
gree 3 polynomial ansatz g[(W − Wc)L

1/n] with n ∼ 0.95 is
shown in the inset. The shaded region is the intermediate
region.

velocity and the wavefront broadening from the aver-
aged squared commutator. We use the universal form for
the squared commutator ahead of the wavefront (where
C(x, t) << 1), conjectured in [60, 62, 68],

C(x, t) ∼ exp
(
−λp (x− vBt)1+p /tp

)
(5)

Here, vB is the butterfly velocity, and p is the wavefront
broadening coefficient, which is known to be p = 1 for
random unitary circuit models [69, 70], p = 0 for large-
N holographic models and p = 1

2 for non-interacting
systems. The above form does not hold in the local-
ized regime, which has a logarithmic lightcone [49–55].
Additionally, the shape of lightcone becomes power-law
like before the MBL transition due to rare region effects
[58, 59]. A general form that captures all the scenarios
is,

C(x, t) ∼ exp
(
−λp (x− vBt)1+p /tp + a log(t)

)
(6)

This form captures the cases where the lightcone is linear
(vB 6= 0, a = 0), power-law (vB = 0, p 6= 0, a = 0) or

logarithmic (p = 0, vB = 0, a 6= 0), as the disorder
strength increases.

Numerical result – Here we use the mixed-field Ising
model with Gaussian disorder as an example to demon-
strate the transitions in Fig. 1. The other three cases can
be found in the Supplemental Material (S.M.). In Fig. 3,
we plot the extracted vB and p versus disorder, for dif-
ferent lengths of the spin chain by fitting the data to the
growth form (5). The fitting procedure and the goodness
of fit are discussed in S.M., Sec. II. The butterfly velocity
decreases as the disorder strength increases and becomes
zero at W ∼ 0.5. On the other hand, p increases as
W approaches the critical disorder, and decreases when
W passes beyond that. This disorder is below the MBL
transition disorder extracted from exact diagonalization
study on the entanglement entropy scaling (Fig. 3(b)).
The fact that vB goes to zero and p peaks at the same
disorder strength indicates a sharp transition before the
true MBL transition, consistent with the weak-link model
describing the rare region effects in disordered systems,
studied recently [59].

Below the transition, the system is characterized by a
finite vB and p, indicating a linear lightcone with broad-
ening front. Above the transition, the velocity becomes
zero and the shape of the lightcone becomes powerlaw
like, x ∼ tp/(p+1). Our method captures the logarith-
mic lightcone in the strong disorder limit (Fig.2 (c)), but
it is difficult to ascertain the transition to the logarith-
mic light cone from fitting the finite space-time data.
This is discussed in S.M., Sec. II, where we also provide
more evidence of logarithmic light cones at high disor-
der strength beyond the MBL transition. The transition
identified here is different from the diffusive-subdiffusive
transition for dynamics of conserved quantities [56, 63].
In particular, we observe that in the Heisenberg model
with box disorder, the vB = 0 transition occurs at a
higher disorder, W ∼ 4 than the spin transport diffusive-
subdiffusive transition disorder, W ∼ 1.1 (from [56], in
our Pauli matrix convention). This implies a separation
of information propagation and spin transport.

Shot to shot variability – We also study the variabil-
ity of the contours of log(C) from one disorder realiza-
tion to another. In Fig. 4(a) a particular contour line
of log(C) is plotted for two different disorder realizations
with W = 0.8 which differ significantly. To characterize
the shot to shot fluctuations, in Fig. 4(b), we plot the SD
of x positions, and observe that at long time, the vari-
ability peaks at the same disorder (W ∼ 0.5) where vB
vanishes. The divergence of fluctuations, obtained with-
out any numerical fitting, is remarkably consistent with
the divergence of p in Fig. 3(a). This substantiates the
transition at W ∼ 0.5. Fig. 4(a) also demonstrates the
microscopic mechanism for vanishing vB before the MBL
eigenstate transition. The contours for two different real-
izations have bottlenecks at certain space regions, where
scrambling is arrested. This is a visualization of rare re-
gion effects - local stronger disorders in certain regions
affecting average dynamical properties.
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FIG. 4. a) The bold black lines are single realizations of −15
contour lines of log(C) at disorder W = 0.8 for the mixed field
Ising model with Gaussian disorder. Note the colored patch
is given by the SD of the x positions for 180 realizations at
a given time. Note that the two disorder realizations have
distinct behaviors after t = 25, with one being significantly
slower because of a local bottleneck of large disorder. b) SD
of x-cuts at times t = 25 and t = 50, for 180 realizations for
different disorders are plotted, which peaks at W ∼ 0.5 and
coincides with the critical disorder where vB vanishes.

Rare region model – Motivated by above numerical re-
sults, we construct a simple model of rare regions which
explains the emergence of power law, broadening behav-
ior, and the existence of a ballistic phase at weak disor-
ders. In a L sized spin chain with Gaussian random disor-
ders N (0, σ2), the SD of local disorder, might be different
from σ. It might also exceed the MBL critical disorder εc,
even when σ < εc. Let ε be the disorder beyond which the
operator growth has a logarithmic light cone. Consider
a continuous stretch of α log(L) spins, whose SD exceeds
ε. The balance between the exponentially slow transport
and logarithmic size of such region leads to overall sub-
ballistic information transport. Specifically, the time it
takes for the information to propagate across the chain
with one such rare region is t ∼ L/vB + eζα logL, where ζ
is treated as the averaged inverse length scale associated
with the logarithmic cone for the current purpose (It is
defined carefully in S.M. Sec. V). In the limit L → ∞,
the average velocity L/t goes to zero for ζα > 1, indicat-
ing the subballistic scenario. This corresponds to the case
where the rare region is long enough that it dominates the
time, t ∼ Lζα. As the ballistic transition is approached,
we have ζα → 1+. Comparing to the power-law light-
cone x ∼ tp/(p+1) indicates that p → ∞, consistent with
the apparent divergence of p at the ballistic-subballistic
transition in our numerical result. A related but distinct
approach was considered in [59], where the rare region ef-
fects on operator spreading were quantified using a coarse
grained quantity related to the entanglement spreading
across weak-links. Our model is directly in terms of the
bare disorder and gives rise to consistent predictions.

The existence of a ballistic phase in the low disorder
limit is also borne out of the simple model. Consider the
probability of having no rare region of length α logL with
SD larger than ε in a disordered spin chain of length L
with global SD σ, denoted as q(α;σ, ε). In general, q de-

creases with σ and increases with α. Based on the above
discussion, any α larger than 1/ζ leads to subballistic
slowing down of the information propagation. Therefore,
a sufficient condition for ballistic propagation is that no
such disruptive rare regions occur, i.e., q(1/ζ;σ, ε) = 1.
In Sec. V of S. M., we prove the following inequality,

q(1/ζ;σ, ε) ≥
(

1− βlog(L)/ζ
) ζL

log(L)

(7)

where β =
(
ε2

σ2 e
1− ε2

σ2

)1/2
. In the limit, L → ∞, the

RHS of Eq. 7 is 1 when β < e−ζ . In terms of microscopic
parameters, the condition becomes,

ε2

σ2
e1−

ε2

σ2 < e−2ζ (8)

Since ζ is finite, there exists a finite σ∗, below which all
σ satisfy the sufficient condition for ballistic transport
Eq. 8, leading to a finite window of a ballistic phase.

It is worth noting that the model only shows the ex-
istence of a ballistic phase for σ < σ∗. The inequality
is a sufficient, but not a necessary condition for ballistic
transport; hence σ∗ should not be mistaken with the crit-
ical ballistic-subballistic transition. Furthermore, in our
numerics, we can’t resolve ε, where sub-ballistic becomes
logarithmic (in a finite system data, a soft power law is
difficult to resolve from a logarithm), or ζ which will be
a complicated averaged scale. Hence we can’t quantita-
tively verify Eq. 8. A more careful study of the difference
between the average time t and the typical time exp(log t)
should be considered to further characterize the ballistic
to sub-ballistic transition.
Conclusions – We studied the ballistic to sub-ballistic

crossover in operator spreading for large interacting dis-
ordered spin systems using MPO dynamics, for different
spin Hamiltonians and error models. Our numerical re-
sults establish the existence of a ballistic phase and a
sharp transition to a subballistic phase. The numeri-
cal observation of fluctuations of the wavefront motivate
a simple model of rare regions which explains aspects
of this transition. Natural extensions of the rare region
model would be to incorporate the effects of wavefront
broadening into the analysis. Also our work demon-
strates a separation between information propagation
and spin transport [56, 63], which could be an interesting
direction of future study.
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