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We use the theory of isostable reduction to incorporate higher order effects that are lost in the
first order phase reduction of coupled oscillators. We apply this theory to weakly coupled com-
plex Ginzburg-Landau equations, a pair of conductance-based neural models, and finally to a short
derivation of the Kuramoto-Sivashinsky equations. Numerical and analytical examples illustrate bi-
furcations occurring in coupled oscillator networks that can cause standard phase reduction methods
to fail.

Self-sustaining oscillatory behaviors can widely be ob-
served in the physical, chemical and biological sciences
[1], [2]. Phase reduction is a tremendously powerful tool
to represent the timing of a high-dimensional limit cycle
oscillation, [1], [3], [4], and has been extensively used to
study the dynamics of coupled oscillators in the weakly
coupled limit. Studies using phase reduction as a starting
point have been used successfully to elegantly character-
ize complicated patterns that emerge in groups of weakly
interacting oscillators [5], [6], [7], [8].

While phase reduction is useful in many applications,
its applicability degrades as coupling strength increases,
often leading to incorrect predictions about dynamical
behavior. Due to this limitation, recent years have seen a
flurry of interest in the development and use of nonlinear
model reduction strategies to characterize the dynamical
behavior of coupled limit cycle oscillators in situations
where the weak coupling approximation is not sufficient
[9], [10], [11], [12], [13], [14], [15], [16]. In general, this
is a difficult task for an n-dimensional model as greater
accuracy coupling functions must usually be found by
considering the dynamical behavior of n− 1 coordinates
transverse to a limit cycle.

In this letter, we approach this problem from the per-
spective of phase-isostable reduced coordinates [17], [13],
in which Floquet theory [18] provides a foundation from
which to define a set of globally exponentially decay-
ing coordinates in an analytically tractable nonlinear re-
duction framework. Subsequent analysis is used to pre-
dict and illustrate bifurcations that emerge as coupling
strength increases in high-dimensional systems of cou-
pled oscillators. As shown in examples to follow, this
phase-isostable reduction framework can be implemented
analytically for some models. Additionally, the general
framework presented here can be used as a starting point
for future research on the behavior of limit cycle oscilla-
tors beyond the weak coupling limit.

We consider the dynamics of N identical coupled os-
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cillators:

X ′i = F (Xi)+ε

N∑
j=1

aijG(Xi, Xj), Xi ∈ Rn, i = 1, . . . N.

(1)
where ′ ≡ d/dt, 0 < ε � 1, G denotes coupling inter-
actions that are of the same form between oscillators
and only differ with respect to weights, aij and F gives
the uncoupled dynamics so that X ′ = F (X) has a sta-
ble P -periodic limit cycle, Y (t). For simplicity of ex-
position, we assume that all but one of the n − 1 non-
zero Floquet multipliers is sufficiently close to 0 so that
only a single isostable coordinate is required per oscilla-
tor (cf., [17]). Let κ < 0 be the corresponding Floquet
exponent and ρ(t) the corresponding eigenfunction and
introduce the phase, θi and (isostable) amplitude, ψi co-
ordinates, Xi(t) = Y (θi(t)) +ψi(t)ρ(θi(t)). Here, θi ∈ S1
and ψi ∈ R gives the distance from the periodic orbit

parameterized by ρ. Letting Ui(t) ≡
∑N
j=1 aijG(Xi, Xj)

denote the sum of coupling inputs we can use the theory
of isostable reduction [17], [13] to get:

θ′i = 1 + ε[Z(θi) + ψiB(θi)]Ui(t),

ψ′i = κψi + ε[I(θi) + ψiC(θi)]Ui(t), (2)

The four functions Z, I,B,C are all computable from
the ordinary differential equation X ′ = F (X) by solving
an appropriate boundary value problem [13]. The func-
tion Z(θ) is the phase-sensitivity function (cf., [1] Eq.
3.2.8). A related phase-amplitude approach was consid-
ered in [15] to analyze oscillatory dynamics subject to
noise. Since ψi are small G(Xi, Xj) ≈ G(Y (θi), Y (θj)) +
ψiρ(θi)G1(Y (θi), Y (θj))+ψjρ(θj)G2(Y (θi), Y (θj)) where
G1,2 are the partial derivatives of G with respect to its
two arguments. Keeping only the lowest order terms, we
use the definition of Ui to see that

θ′i = 1 + ε
∑
j

aij [Z(θi) ·G(Y (θi), Y (θj)) (3)

+ ψih2(θi, θj) + ψjh3(θi, θj)],

ψ′i = κψi + ε
∑
j

aijI(θi) ·G(Y (θi), Y (θj)),
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where

h2(θi, θj) = Z(θi) ·G1(Y (θi), Y (θj))ρ(θi)

+B(θi) ·G(Y (θi), Y (θj)),

h3(θi, θj) = Z(θi) ·G2(Y (θi), Y (θj))ρ(θj).

If we neglect the amplitude, ψi, then we obtain the usual
first order phase reduction.

Substituting θi = t + φi and ψi = εri into Eq. (3) we
solve the resulting linear equation for ri:

rj =
∑
k

ajk

∫ ∞
0

eκsI(θj − s) ·G(Y (θj − s), Y (θk − s))ds

≡
∑
k

ajkf4(θj , θk).

Plugging this into the equation for φi we get

φ′i = ε
∑
j

aijZ(t+ φi) ·G(Y (t+ φi), Y (t+ φj))

+ ε2
∑
j

aij
[
ri(t)h2(t+ φi, t+ φj)

+rj(t)h3(t+ φi, t+ φj)
]
.

Finally, we average the right hand sides over a period P :

φ′i = ε
∑
j

aijH1(φj − φi) (4)

+ ε2
∑
jk

[aijaikH24(φj − φi, φk − φi)

+ aijajkH34(φj − φi, φk − φi)] ,
H1(η) = 〈Z(t) ·G(Y (t), Y (t+ η))〉,

H24(η, ξ) = 〈f4(t, t+ ξ)h2(t, t+ η)〉,
H34(η, ξ) = 〈f4(t+ η, t+ ξ)h3(t, t+ η)〉,

where 〈f(t)〉 = (1/P )
∫ P
0
f(t)dt.

N=2. When N = 2, and coupling is symmetric, then
a11 = a22 = 0 and a12 = a21 = 1 and we get

φ′i = εH1(φj−φi)+ε2[H24(φj−φi, φj−φi)+H34(φj−φi, 0)],

where i = 1, 2 and j = 2, 1 Finally, this system of 2 equa-
tions reduces to a single equation for the phase-difference,
φ = φ2 − φ1:

φ′ = ε[g1(φ) + ε(g2(φ) + g3(φ))], (5)

where g1(φ) = H1(−φ)−H1(φ), g2(φ) = H24(−φ,−φ)−
H24(φ, φ) and g3(φ) = H34(−φ, 0) − H34(φ, 0). Stable
equilibria of Eq. (5) correspond to stable locking of the
coupled oscillator system. For example, it is clear that
perfect synchrony, φ = 0 is always a solution since the
functions gk(φ) are odd and periodic. Synchrony will be
stable if g′1(0) + ε[g′2(0) + g′3(0)] < 0. If g′1(0) is near 0,
then, the higher order terms have a significant role in
determining stability and can also introduce additional
fixed points. We will see both of these phenomena in the
examples below.

We also remark that if G(X1, X2) = D(X2 −X1), i.e.,
diffusive coupling, then:

H1(φ) = 〈Z(t) ·D(Y (t+ φ)− Y (t))〉, (6)

H24(φ, φ) = 〈f4(t, t+ φ)[−Z(t) ·Dρ(t)

+ B(t) ·D(Y (t+ φ)− Y (t))]〉,
H34(φ, 0) = 〈f4(t+ φ, t)Z(t) ·Dρ(t+ φ)〉.

Complex Ginzburg-Landau Model: Consider a pair
of coupled CGL oscillators (in real coordinates):

x′j = xj(1− x2j − y2j )− q(x2j + y2j )yj (7)

+ε[xk − xj − d(yk − yj)],
y′j = yj(1− x2j − y2j ) + q(x2j + y2j )xj

+ε[yk − yj + d(xk − xj)],

for j = 1, 2 and k = 3 − j. With ε = 0, this system
admits a periodic solution, Y = (cos qt, sin qt) := (C, S)
and the relevant functions are Z = (S − S/q, S + C/q),

ρ = (qS + C, S − qC), I = (C, S) and B = 1+q2

q (S,−C).

Additionally, P = 2π/q and κ = −2. Note here that
because the natural frequency is scaled to be 1 in Eq. (2)
the phase takes values in the range of 0 to P . We can
then evaluate Eq. (5) and from these obtain the locking
equation:

φ′ = −ε2

q
sin qφ

(
1− dq + εd2(1 + q2) cos qφ

)
. (8)

The standard phase reduction ignores the O(ε2) terms
and shows exactly two fixed points φ = 0 (synchrony)
and φ = π/q (anti-phase). If ε > 0 then synchrony (anti-
phase) is stable if and only if 1−dq > 0 (resp. 1−dq < 0)
and when ε < 0, these are reversed. The coupled CGL
model allows for an exact expression for all the locking
regions and their stability [19]. The true critical curves
for the stability of synchrony (s) and anti-phase (a) are:

εs =
dq − 1

d2 + 1
,

εa =
1− dq

d2 − 2dq + 3
, (9)

along with ε = 0. These curves are shown in Fig. 1 for
q = 1. In particular, there are additional fixed points
and also bistability between synchrony and anti-phase
for finite non-zero coupling as shown by the shaded re-
gions. Using the higher order locking Eq. (8), we can
compute the stability of synchrony and anti-phase to get
the approximate curves:

εs,approx =
dq − 1

d2(1 + q2)
,

εa,approx =
1− dq

d2(1 + q2)
. (10)

These are shown by the thick solid and dashed lines in
the figure. The agreement is good near the bifurcation
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FIG. 1. Above, the intersection of εa and εs as given by (9)
define regions for which locking (either synchronous or an-
tiphase) is stable for the CGL model (7) when q = 1 and (d, ε)
vary. Synchrony is only stable in regions I,II; anti-phase is
only stable in I,III. Thick solid and dashed lines show εs,approx
and εa,approx, respectively, determined from the higher order
phase approximation.

point d = 1 (when 1 − dq = 0) where they are tangent
to the true curves. Furthermore, all regions are captured
qualitatively.

Loss of Bistability in a Conductance Based Neural
Model: Here we use (5) to analyze phase locking in a
conductance based model of synaptically coupled neurons
[20]:

CV ′i = −IL(Vi)− INa(Vi, hi)− IK(Vi, hi)− IT (Vi, ri)

+ Ib − ε
∑
j 6=i Isyn(Vi, wj),

h′i = (h∞(Vi)− hi)/τh(Vi),

r′i = (r∞(Vi)− ri)/τr(Vi),
w′i = α(1− wi)/(1 + exp(−(Vi − VT )/σT ))− βwi.

(11)

with i = 1, 2. Here, Vi denotes the transmembrane volt-
age of the ith neuron, hi and ri are associated gating vari-
ables, and wi is a synaptic variable. Leak, sodium, potas-
sium, low-threshold calcium current, and baseline current
are IL = gL(Vi − EL), INa = gNam

3
∞(Vi)hi(Vi − ENa),

IK = gK(.75(1 − hi))4(Vi − EK), IT = gT p
2
∞(Vi)ri(Vi −

ET ), and Ib = 2.9µA/cm2, respectively. We take gL =
0.15, gNa = 3, gK = 5, and gT = 10 mS/cm2, rever-
sal potentials are EL = −75, ENa = 3, EK = −90,
and ET = 0 mV, and C = 1µF/cm2. Synaptic current
Isyn(Vi, wj) = wj(Vi − Vsyn), Vsyn = 0 mV, α = 3ms−1,
VT = −20 mV, σT = 0.8 mV, and β = 0.15ms−1 and ε
sets the magnitude of the coupling. All other functions
are identical to those from [20].

In the absence of coupling, each neuron settles to a
limit cycle solution with period P = 24.2 ms. The limit
cycles have one nonnegligible Floquet multiplier of 0.67
(the exponent, κ = −0.01654/msec), the remaining Flo-
quet multipliers are close to zero so that they can be ig-
nored from the reduction (2). Using methods described

in [13] the reduced functions Z, B, I, and C from (2) are
calculated numerically and subsequently used to deter-
mine the functions H1, H24, H34 and f4 from (4). First
and second order coupling functions calculated numeri-
cally and shown in panels B and D of Fig. 2 for different
values of ε. For low coupling strengths (in the limit of
small coupling), both first and second approximations
(gray and blue curves, respectively) predict bistability
of (11) whereby both the synchronous and anti-phase
states are stable. Panel A confirms this in full model
simulations. However, as ε increases, the synchronous
state loses stability, as seen in panel C. This behavior is
predicted from the second order accurate approximation
from panel D. Note that (5) does not necessarily charac-
terize the transient convergence to the limiting solution;
application of Floquet theory to the synchronized limit
cycle solution of (11) identifies a pair of complex conju-
gate Floquet exponents. This explains the intersecting
black lines in panel A.

FIG. 2. Solid black lines in Panels A and C show the phase
differences from full simulations of (11) for different initial
conditions and coupling strengths. Here, φ is inferred di-
rectly from from numerical simulations of the full model (11).
Panels B and D illustrate corresponding coupling functions
calculated according to (5). Dashed (resp., solid) red lines
denote unstable (resp. stable) fixed points predicted by the
second order accurate coupling functions. The loss of stability
due to changes in coupling strength can never be predicted
by first order accurate methods alone because the shape of
the resulting coupling function cannot change with ε. On
the other hand, the second order accurate strategy used here
reflects the observed behavior perfectly.

A Concise Derivation of the Kuramoto-
Sivashinsky Equations: We can use the isostable
formulation to analyze weakly coupled PDEs as well as
ODEs by assuming spatial dependence in the phase and
isostable coordinates. For example, the KS equation
arises from a perturbative analysis of the equation:

ut(x, t) = F (u) + εDuxx,

when ut = F (u) has a stable periodic orbit, Y (t). (Note
the analysis is the same in multiple space dimensions.)
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In this case, u(x, t) ≈ Y (t+ φ(x, t)) and φ solves:

φt = ε
(
βφ2x + αφxx + γφxxxx

)
,

where [1]

α = 〈Z(t) ·DY ′(t)〉,
β = 〈Z(t) ·DY ′′(t)〉.

Here we also show that the the coefficient γ can be di-
rectly related to the terms of the phase amplitude equa-
tions (2). Recall the first order phase equation for a pair
of diffusively coupled oscillators Eq (6). We can use these
to see α = H ′1(0) and β = H ′′1 (0). If α is O(1), then the
fourth derivative terms do not come into play; however,
if α is small, then they matter. To emphasize this point,
we write D = D0 + εD1 so that α = α0 + εα1 and D0

is chosen so that α0 = 0. (Note that D cannot be a
scalar multiple of the identity since 〈Z(t) · Y ′(t)〉 = 1.
We also assume that D1 is not a multiple of D0 so that
α is not 0 for ε 6= 0.) The coefficient γ is quite compli-
cated to compute (see Eq. 4.2.26 in [1]). We now show
that it is directly related to the second order phase func-
tions. To simplify the analysis, as above, we assume a
single isostable coordinate. As in the discretely coupled
systems, we write

u(x, t) = Y (θ) + ψρ(θ),

so that

uxx = Y ′′(θ)θ2x + Y ′(θ)θxx

+ 2ψxθxρ
′(θ) + ψxxρ(θ) + ψθ2xρ

′′(θ) + ψθxxρ
′(θ).

With this, we can write the isostable equations for the
PDE:

θt = 1 + ε[Z(θ) + ψB(θ)] · (D0 + εD1)uxx,

ψt = κψ + ε[I(θ) + ψC(θ)] · (D0 + εD1)uxx.

Our assumption on D0 (α0 = 0) enables us to make the
ansatz, θ = t+ εφ and ψ = ε2r, whence,

uxx = εY ′(θ)φxx + ε2[Y ′′(θ)φ2x + rxxρ(θ)] +O(ε3).

(We remark that the scaling of φ, ψ has changed by order
ε here. This is a consequence of our assuming that α is
not O(1), but rather O(ε) and is made in order for the
order ε terms to ultimately vanish.) Proceeding as above,
we find

r(x, θ) = φxx

∫ ∞
0

eκsI(θ− s)D0Y
′(θ− s) ds ≡ φxxf4(θ).

and plugging into the equation for φ, we get:

φt = εZ(θ) ·D0Y
′(θ)φxx

+ ε2Z(θ) ·
(
D1Y

′(θ)φxx +D0[Y ′′(θ)φ2x + ρ(θ)f4(θ)φxxxx]
)

Averaging this over θ, we obtain the KS equations with
α = α1 = 〈Z(t) ·D1Y

′(t)〉, β = 〈Z(t) ·D0Y
′′(t)〉 and

γ =

〈∫ ∞
0

ds eκsI(t− s) ·D0Y
′(t− s)Z(t) ·D0ρ(t)

〉
.

Recalling the definitions of H24 and H34 from Eq. (6)
above, we see that

γ = −∂H34(φ, 0)

∂φ
|φ=0

= −∂H24(φ, φ)

∂φ
|φ=0

=
1

4
(g′2(0) + g′3(0)).

Remarkably, while B(θ) plays a role in higher order dif-
fusive coupling, it is irrelevant to γ. This calculation
can be generalized to the case of multiple isostables with
the same result: the coefficient γ is just one fourth of
the slope of the higher order phase-interaction function
evaluated at synchrony.

Conclusions To conclude, we have developed a frame-
work that can be used to determine the coupling func-
tions with accuracy beyond that of the standard phase
reduced framework. Our analysis indicates that the cou-
pling strength can have a profound influence on the shape
of coupling functions, ultimately resulting in qualitative
differences in steady state behavior that first order phase
reduction methods are unable to predict. Numerical ex-
amples presented here illustrate the necessity of incorpo-
rating higher order effects when the dynamics are close to
a bifurcation. Due to the generality of the approach pre-
sented here, we expect this method to shed light on the
mechanisms governing synchronization in larger popula-
tions of limit cycle oscillators. Interesting future exten-
sions will consider limiting behavior with N > 2 oscilla-
tors that can yield richer limiting behaviors (e.g., rotating
block and chimera states). Finally, the results presented
here are accurate toO(ε2) in the coupling strength. In or-
der to understand bifurcations that occur at even higher
coupling strengths other methods that give a fuller rep-
resentation of the phase and amplitude coordinates will
need to be used.
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