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Hydrated granular packings often crack into discrete clusters of grains when dried. Despite its
ubiquity, accurate prediction of cracking remains elusive. Here, we elucidate the previously over-
looked role of individual grain shrinkage—a feature common to many materials—in determining
crack patterning using both experiments and simulations. By extending the classical Griffith crack-
ing theory, we obtain a scaling law that quantifies how cluster size depends on the interplay between
grain shrinkage, stiffness, and size—applicable to a diverse array of shrinkable, granular packings.

Hydrated packings of grains often crack when they dry;
familiar examples of this phenomenon are cracks in mud
and paint [1]. Cracking is often undesirable, damaging
structures built on clay-rich soil, causing waste leakage
from subsurface clay barriers [2], altering the texture of
foods [3], disrupting biological tissues [4], and limiting
the performance of coatings [5]. In other cases, cracking
is desirable, but must be controlled; emerging examples
include micro/nano-patterning [6] and transport in fuel
cells [7]. However, despite the ubiquity and practical
importance of this phenomenon, accurate prediction of
cracking remains elusive.

Cracks often form two-dimensional (2D) polygonal
patterns that separate discrete clusters of grains [8]. The
size of these clusters impacts macroscopic appearance,
texture, transport, and mechanics; thus, it is important
to identify the factors that affect cluster size. The char-
acteristic cluster size has been found to vary widely de-
pending on drying dynamics, packing size, friction with
a substrate, capillarity, and grain-scale factors such as
grain stiffness and size [9–21]. Recent work has taken a
first step towards predicting these dependencies by apply-
ing classical Griffith cracking theory, in which cracking
is governed by a balance of strain and surface energies
[22, 23], to granular packings [14–21]. However, while
this approach can describe how the characteristic cluster
size scales with packing thickness [21], quantitative pre-
diction of cluster size remains elusive for many materials.

Here, we reveal a key, previously overlooked, granular
property that also governs cracking: the ability of indi-
vidual grains to shrink as they dry. Grain shrinkage is
common to many materials including clays, soils, coat-
ings, biological tissues, and foods, for which the stresses
resulting from shrinkage often dominate over externally
applied stresses [24, 25]. Nevertheless, while some models
account for macroscopic shrinkage during drying by con-
sidering grain densification and deformation [14–20], only
recently has individual grain shrinkage been recognized
as a factor that can strongly affect cracking—often in un-
expected ways [26]. Unfortunately, how grain shrinkage
influences the final cluster size after drying is unknown;
no current theory of cracking incorporates this behavior.

In this Letter, we use experiments and discrete-element
(DEM) simulations to study the influence of grain shrink-

age on crack patterning. The sizes of clusters formed by
cracking depend on an interplay between grain stiffness
and size, the overall packing size, and capillarity—all of
which evolve with grain shrinkage–as well as substrate
friction. By explicitly incorporating grain shrinkage into
classical cracking theory, we show that the cluster sizes
can be predicted by balancing the mechanical energy re-
quired to break capillary bridges at the boundary of a
cluster and the strain energy resulting from grain shrink-
age and substrate friction. Our work thus provides a new
scaling law that can describe crack patterning in a wide
range of soft materials with shrinkable components.

To experimentally test the role of individual grain
shrinkage, we study granular packings of shrinkable, non-
Brownian, cross-linked hydrogel beads with tunable bead
shrinkability, stiffness, and size. Each packing is confined
between two smooth, hydrophobic, parallel substrata in a
disk geometry with initial packing radius R, chosen to be
sufficiently small to ensure uniform bead shrinkage dur-
ing drying [27]. The top surface is free to track the top
of the packing as it dries, resulting in an unloaded con-
figuration (Figure 1a). Moreover, to isolate the influence
of bead shrinkage, we prepare each packing in an ini-
tial pendular configuration [28], with the hydrated beads
held together by capillary bridges as previously described
[26]. The capillary bridges initially compress the individ-
ual beads by a distance δwet as shown in Fig. 1b–c [29–31].
As the packings continue to dry, the beads shrink in vol-
ume by a factor Φ ≡ Vwet/Vdry where V is the volume of
an individual bead and the wet and dry subscripts refer to
the initial hydrated and dehydrated states, respectively.
Often known as the degree of swelling, we term Φ the
bead shrinkability to emphasize the shrinkage during the
drying process. The combination of bead shrinkage and
substrate friction then causes beads to separate, break-
ing the capillary bridges between some of them, leading
to the formation of cracks [32]; these bridges can thus be
weaker than the inter-atomic/molecular bonds in contin-
uum solids. The friction results from capillary adhesion
to the substrate; thus, it exists in the absence of any
load unlike classical friction [14]. Away from cracks, the
beads remain held together by capillary bridges, even at
the final dry state, likely due to non-zero humidity in the
ambient.
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FIG. 1. Experiments highlight the impact of bead-scale properties on cracking. (a) Schematic of a packing of shrinkable beads
confined between two substrata. As the packing dries, the individual beads shrink, leading to the formation of a 2D crack
network. (b) The beads are in a pendular state with capillary bridges that compress adjacent beads together (c) as observed via
brightfield microscopy. Cracks form when bridges break due to bead shrinkage and friction with the substrate. (d) A packing
of small, low shrinkability beads has minimal cracking. (e) A packing of larger, high shrinkability beads has more cracking.
(f) A packing of even larger, high shrinkability beads with less compression has even more cracking. We use microscopy to
directly measure Φ = 2.0(1), 8.5(11), 8.5(11); δwet = 1(1), 21(6), 15(8) µm; and Rwet = 34(9), 59(14), 86(18) µm for (d–f),
respectively. Parentheses indicate uncertainty.

Cracks ultimately form a 2D network that sepa-
rates discrete, polygonal clusters of close-packed grains
(Fig. 1). The cluster geometries are uniformly extruded
along the packing height. We thus apply a morphological
thinning algorithm to binarized 2D projections to iden-
tify the crack network, shown by the red lines in Fig. 1d–f.
Measuring the total length of this network yields the to-
tal crack length Lc, and summing the individual pixels
circumscribed by the network yields the effective clus-
ter area at the initial hydrated state, A. These clus-
ters tessellate the entire extent of the packing. Assuming
uniform clusters then yields a characteristic cluster area,
defined as the number of beads making up the hydrated
cluster area A, N ∼ R4/L2

cR
2
wet [27].

First, we test packings confined by the same
substrata—thus, having similar substrate friction—and
having the same height. Classical cracking theory pre-
dicts that cluster size varies with these two factors; how-
ever, previous work do not consider the influence of grain
shrinkability Φ. To test the influence of this critical pa-
rameter, as well as the other grain-scale parameters δwet

and Rwet, we test four different classes of beads made
of the same material: Sephadex G-10M, G-25M, G-50M,
and G-50F. These have varying hydrated mesh sizes, de-
noted by the number, resulting in shrinkability Φ increas-
ing from 2.0 to 8.5 and capillary compression δwet increas-
ing from 1 to 21 µm, respectively. They also have varying
hydrated bead sizes Rwet, denoted by the letter M or F,
ranging between 34 and 86 µm.

We observe striking differences in cracking for the dif-
ferent packings. The total crack length Lc increases, and
the equivalent cluster area N decreases, with increasing
Φ and Rwet; compare Fig. 1d,e. The crack length also
increases, and the cluster area decreases, with decreasing
δwet and increasing Rwet; compare Fig. 1e,f. Thus, differ-
ent packings with the same height and substrate friction

can have vastly differing cluster sizes depending on grain
shrinkage, stiffness, and size.

To further investigate the role of these factors on crack-
ing, we next perform DEM simulations of 2D packings of
shrinkable beads. We specify Φ in each simulation. The
beads are interconnected by capillary bridge bonds in
the pendular configuration, and shrink from the initial
hydrated state (R = Rwet) to the final dehydrated state
(R = Rdry) as drying progresses; these bonds are thus
unlike bonds in continuum solids, which do not change
during drying. During drying, the inter-bead Hertzian
contact force resisting compression ∼ KR1/2δ3/2, where
K and δ are the shrinkage-dependent bead bulk modu-
lus and compression, respectively, as supported by pre-
vious work [27, 33–36]. Conversely, the capillary force
compressing the beads together is 2πγa, where γ is the
surface tension of water and a is the shrinkage-dependent
contact radius

√
δR/2, consistent with our observations

of thin capillary menisci between beads [26, 27, 29, 37–
40]. We neglect inter-bead friction since this has been
measured to be negligible [41]. The balance between
the contact and capillary forces then determines δ =
8πγ/ (3K) (schematized in Fig. 1b) as previously vali-
dated [26, 27, 29–31, 42–44]. As intuitively expected,
the bead compression depends inversely with the stiff-
ness. To incorporate the influence of bead size, we fur-
ther express this compression in nondimensional form at
the initial hydrated state (Fig. S3):

δ̂wet ≡
δwet

Rwet
=

8πγ

3KwetRwet
. (1)

This parameter thus describes the combined influence
of bead compression and bead size on cracking; in each
DEM simulation, we specify the value of δ̂wet to be tested.

Cracking also depends on the competition between
capillary cohesion holding the packing together and fric-
tional forces at the substrata immobilizing the grains.



3

(�)
����� ��������������
���� ��������� �����������

(�=����� δ

��� = �����)

����� ����� �������
����� ��������
(�=���� �= ��)

(�)
������ ��������������
���� ��������� �����������

(�=���� δ

��� = �����)

������ ����� �������
������ ��������
(�=���� �= ��)

(�)
������ ��������������
���� ��������� �����������

(�=���� δ

��� = �����)

���� ����� �������
����� ��������
(�=���� �= �)

●●●●

●●●

●●
●

●

●●
■

■

■
■
■

■

■

□

□

□
□

□□

▲

▲

▲

��� ���
�

�

�

�

�

�
�
�
�

��

��

��

��

�

�

�

�

�
�
�
�

��

��

��

��������� ������� ℋ

�
��
�
��
�
�
��
�
�
�

●Φ = ����� δ

��� = �����

■ Φ = ����� δ

��� = �����

□ Φ = ����� δ

��� = �����

(����������)

▲ Φ = ����� δ

��� = �����

▼
▼

▼

▼

▼

◆
◆

◆
◆◆◆
◆◆

◆

◇

◇

◇

◇

▮

▮

▮

▮

��-� ��-� ��� ���

�

�

�

�

�
�
�
�

��

��

��

������������� - ��Φ - �

▼ℋ = ���� δ

��� = �����

◆ℋ = ��� δ

��� = �����

◇ℋ = ��� δ

��� = �����

(����������)

▮ℋ = ���� δ

��� = �����

◀

◀

▶

▶

▶
▶

▶

★
★
★

��-� ��-� ��-�
�

�

�

�

�

�
�
�
�
��

��

��

��

������������ δ

���

◀ Φ = �����ℋ = ���

▶ Φ = �����ℋ = ��

★Φ = �����ℋ = ��

(�) (�) (�)

FIG. 2. DEM simulations isolate the influence of bead shrinkage, stiffness, and size on cracking. (a) A simulated packing of low
shrinkability beads has minimal cracking. (b) A simulated packing of high shrinkability beads has a larger degree of cracking.
(c) A simulated packing of high shrinkability beads with less capillary compression has an even larger degree of cracking. In
(a–c), we set M = 613 and hold Ffr/ (2πγRwet) = 0.05 fixed to mimic the experiments. In (d–f), we quantify the equivalent

cluster area, N , while independently varying the (d) effective height H, (e) shrinkability Φ, and (f) bead compression δ̂wet.

Colored lines are curves fit to the data indicating that N (d) increases with height as ∝ H4/3, (e) decreases with the shrinkability

as ∝ Φ−(m+1/9) with m = 9/4, and (f) increases with bead compression as ∝ δ̂2/3wet . We do not observe a considerable difference
in N upon varying packing size, M , from 91 to 823 or using a disordered packing configuration (open symbols).

Our simulations treat friction on a single-bead basis by
first determining the net capillary and contact forces
on a bead. If this net force exceeds a constant static
friction threshold Ffr—which we specify in each DEM
simulation—the bead moves; otherwise, it does not.

Conversely, Ffr is similar for all the experiments, and
the relative importance of friction can instead be tuned
by changing the packing height. This dependence can be
intuitively understood by considering the stress at the
boundary of a cluster just before cracking,

σc =
friction× cluster area

cluster surface area
∼ NFfr

N1/2HR2
wet

, (2)

which quantifies the diminishing role that friction plays
as packing height increases; here, H is the number of
bead monolayers making up the packing height. Thus,
to compare results from the simulations and the experi-
ments, we combine the effects of friction and height into
a single nondimensional parameter, the effective height :

H ≡ H 2πγRwet

Ffr
. (3)

The simulations thus represent a 2D cross-section of the
3D experimental packing.

The DEM simulations solve for bead sizes, bead po-
sitions, and capillary-bridge bonds by explicitly treating
bead-scale contact, capillary, and friction forces during
drying [26]. To explicitly treat the evolution of bead-scale
parameters with shrinkage, we use moduli that change as
the beads shrink: K = Kwet (Rwet/R)

3m
with m = 9/4

as verified by others [45–48]. Moreover, to match the

experiments, we ensure that the simulated bead shrink-
age is uniform during drying; thus, our simulations do
not probe dynamic effects arising from non-uniform wa-
ter content [26, 27]. We implement a gradient-descent
scheme to find the mechanical minimum for the beads
as the packing dries, and use a hybrid event-detection
scheme to break bonds when they become overstretched.
Both initially ordered and disordered structures yield
similar results (closed and open symbols in Fig. 2d), in-
dicating that our results can be generalized.

To characterize the crack patterns in the DEM simula-
tions, we count the number of missing capillary bonds per
monolayer for the final cracked state, u. This quantity
yields a direct measure of total crack length, including
the packing boundary as in the experimental analysis.
Again assuming uniform clusters then yields the charac-
teristic cluster area, N ∼ M2/u2, where M is the total
number of beads in the 2D packing cross-section [27].

We use the DEM simulations to directly probe the
influence of varying Φ and δ̂wet—which quantify grain
shrinkability, stiffness, and size—on cracking. We
hold the nondimensional friction Ffr/ (2πγRwet) fixed to
mimic the experiments. Remarkably, we find similar
crack patterns in the simulations (Fig. 2a–c) and the
experiments (Fig. 1d–f). In particular, the total crack
length u increases, and the equivalent cluster area N de-
creases, with increasing Φ; compare Fig. 2a,b. The crack
length also increases, and the cluster area decreases, with
decreasing δ̂wet and increasing Rwet; compare Fig. 2b,c.
Our simulations thus reproduce the experimental obser-
vations, indicating that they successfully capture the key
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underlying physics.
The DEM simulations also provide an opportunity to

test the relative importance of substrate friction on crack-
ing by tuning Ffr, and thus, H. Previous work has shown
that the equivalent cluster area scales with packing height
as a power law: N ∝ H4/3 [21, 23]. We observe a similar
scaling in our simulations for all packing geometries, bead
shrinkabilities, stiffnesses, and sizes tested (Fig. 2d), sug-
gesting that a similar balance of forces mediates cracking.
However, our results demonstrate that the prefactor to
this scaling also depends on the previously-overlooked pa-
rameter Φ, as shown in Fig. 2e. Specifically, we find that
cluster area can vary over an order of magnitude with
varying Φ, even with all other parameters unchanged—
an effect that is missed in previous work. Clearly, the
current understanding of cracking is incomplete.

To more completely describe cracking, we explicitly
incorporate Φ into classical cracking theory. Following
previous work [21, 23], we consider the balance between
the surface energy required to create a crack and the
strain energy within a cluster for 2D clusters that are
extruded along the packing height [27]:

2πγaδ

R2
wet︸ ︷︷ ︸

crack surface energy
per unit area

N1/2R2
wetH︸ ︷︷ ︸

cluster
surface area

∼ σ2
c

2E︸︷︷︸
strain energy

per unit volume

NR3
wetH︸ ︷︷ ︸

cluster
volume

.

(4)
Here, a =

√
δR/2 is the contact radius between equally

sized beads, E = (3/16)
√

3Kwetγ/ (πRwet) is the effec-
tive Young’s modulus of a pendular packing [26, 29], and
σc is the stress resulting from friction with the substrata
at the point of cracking (Equation 2). Importantly, both
the surface energy and the strain energy depend on grain
shrinkability Φ; these dependencies are not incorporated
in previous descriptions of cracking for continuum solids,
because they arise from grain-scale processes. Specif-
ically, a and δ are Φ-dependent, and we assume that
at the point of cracking, these granular properties are
determined by the final dehydrated state: a ∼ adry =√
δdryRwet/

(
2Φ1/3

)
and δ ∼ δdry = Rwetδ̂wetΦ

−m, using

Eq. 1. Thus, the Griffith energy balance (Eq. 4) can be
expressed completely in terms of N and H, as well as the
grain-scale parameters Φ and δ̂wet. Solving for N and
applying Eqs. 1, 2, and 3 then yields a general scaling
law for cluster size:

N ∼ δ̂2/3wetΦ
−(m+1/9)H4/3, (5)

where the exponent m = 9/4 for our hydrogels, but can
be modified for other shrinkable materials. This scaling
yields the N ∝ H4/3 dependence found in other studies
[21, 23], but also explicitly describes the dependence of
cracking on bead shrinkability. Specifically, we expect
that the propensity for cracking increases, and thus the
equivalent cluster area decreases, as bead shrinkability Φ

increases: the capillary bridges between beads are more
likely to stretch and break, resulting in cracking.
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FIG. 3. DEM simulation and experimental results all collapse
on our scaling law (Eq. 5). We perform a regression on the
simulation data to obtain the dashed line, with a coefficient
of determination = 0.98. For the experimental data, we fix
Ffr = 0.02 × 2πγRwet, in independent agreement with our
measurement of friction. Error bars reflect the combined un-
certainties in crack length, bead size, and the packing fraction
η. Different symbols show different classes of Sephadex beads
with different shrinkability, compression, and bead size. We
assume m = 9/4.

Our DEM simulations—which explicitly incorporate
the nonlinear bead interactions and shrinkage-dependent
bead properties—independently probe H, Φ, and δ̂wet

varying over one to three orders of magnitude (Fig. 2d–
f). These results enable us to directly test Eq. 5. Despite
our simplifying assumptions of linear elasticity and qua-
sistatic cracking, we find that this scaling law collapses
all of the results onto a single curve, as shown by the
circles in Fig. 3. Moreover, performing a regression—
fitting only a constant of proportionality—on all of the

results yields the relation N = 6.47 δ̂
2/3
wetΦ

−(m+1/9)H4/3,
in excellent agreement with the scaling law. As a final
verification of our scaling law, we perform experiments on
hydrogel bead packings of systematically varying Φ, δ̂wet,
and height, measuring N in each case. We again find that
Eq. 5 collapses all the results onto the same curve as the
DEM results, as shown by the symbols in Fig. 3. This
agreement between the experiments, DEM simulations,
and theoretical prediction provides strong evidence of the
validity of our new description of cracking.

Our work sheds light on how cracking depends on the
interplay between grain shrinkage, stiffness, and size, as
well as capillary cohesion and substrate friction. By ex-
plicitly incorporating grain shrinkage into classical crack-
ing theory, our scaling prediction provides a way to
predict crack patterning in diverse shrinkable, granu-
lar packings—including clays, soils, coatings, biological
tissues, and foods. We anticipate that our work will
also guide controlled cracking for applications such as
micro/nano-patterning [6] and transport in fuel cells [7].
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