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We study the jamming phase diagram of sheared granular material using a novel Couette shear
set-up with multi-ring bottom. The set-up uses small basal friction forces to apply a volume-
conserving linear shear with no shear band to a granular system composed of frictional photoelastic
discs. The set-up can generate arbitrarily large shear strain due to its circular geometry, and
the shear direction can be reversed, allowing us to measure a feature that distinguishes shear-
jammed from fragile states. We report systematic measurements of the stress, strain and contact
network structure at phase boundaries that have been difficult to access by traditional experimental
techniques, including the yield stress curve and the jamming curve close to φSJ ≈ 0.75, the smallest
packing fraction supporting a shear-jammed state. We observe fragile states created under large
shear strain over a range of φ < φSJ . We also find a transition in the character of the quasi-static
steady flow centered around φSJ on the yield curve as a function of packing fraction. Near φSJ ,
the average contact number, fabric anisotropy, and non-rattler fraction all show a change of slope.
Above φF ≈ 0.7 the steady flow shows measurable deviations from the basal linear shear profile,
and above φc ≈ 0.78 the flow is localized in a shear band.

Keywords: Granular matter, Shear jamming, Strain amplitude, Couette multi-ring bottom geometry, Pho-
toelasticity

When a granular material prepared in a stress free
state is sheared, it can make a transition into a me-
chanically stable state through a process known as shear
jamming [1]. Shear jamming occurs in many different
systems, including glasses [2], suspensions [3–8] and dry
granular matter with [1, 9–13] or without [14–17] friction.
In 2011, Bi et al. [1] provided a jamming phase diagram
(Fig. 1(a)) that extended the Liu-Nagel framework [18]
by including a region of shear-jammed (SJ) states for
frictional granular materials at finite shear stress with
packing fractions φ between a critical value φSJ and
φ0J , the isotropic jamming packing fraction for friction-
less particles. Starting from a stress free state, applying
shear strain γ can lead to two different types of jammed
states: fragile (F) states that are only stable for com-
patible loads, and SJ states that are stable to reverse
shear [1, 19]. A minimum shear strain γSJ(φ) is needed
to create a SJ state for fixed φ. In the past decade, many
efforts have focused on explaining the origin of rigidity in
sheared granular matter with φ close to the high packing
fraction portion of the jamming curve (the yellow curve
in Fig. 1(a)) [1, 12, 15, 20–23]. However, less attention
has been paid to other parts of the phase diagram, in
particular to the yield stress curve, which is important
for the rheology of dense granular flow, or to the jamming
curve close to the critical packing fraction φSJ , where the
relation between the shear strain γ and jamming has not
been experimentally determined.

Experimental measurements of the phase boundaries
in the jamming phase diagram are challenging because

it is hard to create SJ states without the formation of
a shear band and the associated heterogeneities in the
packing fraction φ and strain field [10, 24–28]. In 2013,
Ren et al. [10] developed a multi-slat, simple shear setup
that avoids shear banding, which revealed a distinction
between F and SJ states [21, 23]. However, their multi-
slat setup had a strain limit (∼ 60%) [10], and thus could
not access the yield stress curve or the SJ states near φSJ ,
where γSJ keeps growing as φ→ φ+SJ [1, 11, 15, 16].

In this letter we solve this challenge using a multi-
ring Couette shear set-up, which applies a linear shear
strain field using basal friction forces to drive the sys-
tem until it becomes shear-jammed. This form of driving
may be thought of as a physical implementation of the
algorithm used in certain athermal, quasistatic (AQS)
simulations [20, 29]. With our apparatus, we can also
keep shearing the jammed system using boundary racks
to measure the yield stress curve. By shearing a layer of
photoelastic disks, we for the first time experimentally
map out the phase boundaries in the jamming phase di-
agram close to φSJ , including the yield stress curve and
the jamming curve. We find that fragile states exist be-
low φSJ that were not included in the traditional phase
diagram [1]. Moreover, we find two transitions on the
yield stress curve: (i) above φF ≈ 0.7, the steady states
no longer deform linearly under shear, and (ii) above
φc ≈ 0.78 their deformation field becomes localized. We
relate those transitions to the contact network structures.

Experiments – The experiments are carried out with a
novel multi-ring Couette shear set-up shown in Fig. 1(b),
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FIG. 1. (color online) (a) The jamming phase diagram in
the shear stress τ and packing fraction φ plane adapted from
[30]. Only φ < φ0

J part of the diagram is shown. The yield
stress curve and the jamming curve are highlighted in blue and
yellow, respectively. (b) Schematic of the multi-ring Couette
set-up. 21 horizontal concentric rings rotate step-wisely to
quasi-statically shear bidisperse photoelastic discs. For each
shear step, ring at position r rotates by an arc length d(r).
The nominal shear strain is defined as γ = d(r)/r. (c) Particle
displacements in radial (ur) and azimuthal (uθ) directions in
a shear step for a dilute system (φ = 0.57). The dashed line is
the linear basal profile d(r). After each shear step the system
is imaged in UV light (e) and in polarized green light (d).

which quasi-statically and linearly shears a 2D granular
medium composed of bidisperse photoelastic discs with
friction coefficient 0.9 and diameters 1.59 cm and 1.27 cm
(denoted as d) [31]. The ratio of the numbers of big and
small particles is 1/3. Particles have reflective paint on
their bases to enable reflective photoelasticimetry [32–
35]. The total number of particles is varied from 1447 to
2101, which corresponds to 0.56 < φ < 0.82. The Cou-
ette set-up consists of 21 independently controlled con-
centric rings. The 1.2 cm wide rings rotate collectively,
providing weak frictional forces to the particles sitting
on them. Although essential to perform the linear shear,
the magnitude of basal friction is ∼ 8 times smaller than
the typical contact forces measured in the SJ states on
the jamming curve (Fig. 1(a)). Particles are constrained
radially by outer and inner toothed boundaries of radius
rout = 35.5 cm and rin = 8.7 cm. The outer boundary
rotates with the rings and the inner boundary is fixed.

For each experiment, a stress-free random configura-
tion is prepared. The quasi-static linear shear is then
applied in a stepwise manner. For each step, the ring at
radial position r rotates through an arc length d(r) = γr.
The function d(r) sets the ‘basal profile’ and γ is called
the ‘shear strain’ by analogy with traditional simple
shear [10]. We note that γ is not the physical shear
strain, i.e., the off-diagonal element of the strain ten-
sor, εrθ = ∂rd(r) − d(r)/(r + rin) = γrin/(r + rin) [36].
During a rotation step, in which δγ = 0.6%, the shear

rate is γ̇ ∼ 10−3s−1. After each step, the rings stop for
10 s to let the system reach a static state. As plotted
in Fig. 1(c), for a dilute system, the azimuthal parti-
cle displacements uθ per step follow d(r), and the radial
displacements ur fluctuate around zero. No shear band
is observed. We apply large forward strains to measure
the yield stress curve, and the strain direction is then
reversed to distinguish fragile and shear-jammed states.

The system is sequentially lit from the top by circular
polarized green light, and from the side by ultra-violet
(UV) light [31]. Between two consecutive shear steps,
after reaching a static state, the system is imaged (Canon
EOS 70D, 5472× 3648 px2) through a circular polarizer
with UV and polarized lights. UV images (Fig. 1(e)) give
particle positions. The polarized images (Fig. 1(d)) give
stress and contact information. We measure the pressure
P , defined as the trace of the force moment tensor [1,
10], using the averaged squared intensity gradient [9, 10,
34, 35, 37, 38] of the polarized image [31]. A sheared
system must develop a non-zero P to resist finite shear
stress τ . We also measure the non-rattler contact number
Znr, defined as the mean contact number among stressed
grains [1, 34, 39], the non-rattler fraction fnr, defined as
the number fraction of stressed grains, and the fabric
anisotropy ρ, defined as the ratio between the difference
and the sum of the eigenvalues of the fabric tensor [31].
(See Ref. [34] for a detailed description of the contact
detection algorithm.)

FIG. 2. (color online) (a-b) The pressure P and the non-
rattler contact number Znr versus γ for different φ during
forward shear. The dashed black curve in (b) plots the ex-
ponential fit by Eq. (1) for Znr(γ) with φ = 0.78. The blue
dashed line shows the γst value for this run. (c) Strain needed
to reach the steady regime, γst(φ). The black line is a linear
fit γst ∝ (φ − φ0) for φ > 0.72. (d) P versus γ for a typi-
cal reverse shear test (φ = 0.781) with forward shear strain
γmax. (e) The minimum pressure, Pmin, during the reverse
shear versus γmax for φ = 0.781. γSJ is the minimum γmax
for which Pmin > Pnoise = 0.3 N/m [31].
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Results – Figures 2(a) and (b) show pressure P and non-
rattler contact number Znr versus shear strain γ, for typ-
ical runs with different φ. For a given φ, after a transient
growth regime, both Znr and P fluctuate around con-
stant values that define the yield stress curve. We refer
the associated stress as the “steady states” stress. We
find that Znr can be fitted to:

Q = Qst + c ∗ e−γ/γc (1)

where Q can be Znr, fnr or 1−ρ, and Qst, c and γc are fit
parameters. An example fit for Znr(γ) with φ = 0.76 is
plotted in Fig. 1(b). We find that the steady regime has
been reached at γst ≡ 3γc for all state variables, where
γc is obtained from the fits for Znr. Figure 2(c) shows
γst(φ), where a linear fit γst ∝ (φ − φ0) for φ > 0.72
gives φ0 = 0.84 ± 0.02, close to the frictionless isotropic
jamming density [40]. The slope is −1545± 427 (%).

We identify a system as shear-jammed (SJ) if under
reverse shear the pressure never drops below the noise
threshold Pnoise = 0.3 N/m [31], which indicates that
the system resists the reversed stress rather than simply
allowing a reversion to a stress-free (unjammed) state.
Figure 2(d) shows the evolution of P during a shear cycle
for a system with φ = 0.781. Figure 2(e) plots the depen-
dence of the minimum pressure Pmin during reverse shear
on the maximum forward shear strain γmax, from which
we extract the minimum strain, γSJ , required to create
a SJ state. We find no SJ state for φ = 0.74 even when
γmax � γst [31]. For φ = 0.75, we find γSJ ≈ γst. The
minimum packing fraction that supports shear jamming
must lie between these two values: φSJ = 0.745± 0.005.
Figure 3(a) plots the relation between γSJ and φ, which
can be fitted using a form suggested in Ref. [15],

γSJ(φ) = γb

[
ln

(
φ0J − φSJ
φ− φSJ

)]α
(2)

where φSJ = 0.745 is preset and the fit parameters are
α = 0.68± 0.11, γb = 64± 6(%) and φ0J = 0.820± 0.005.

In this work, fragile (F) states refer to states with non-
zero pressure (P > Pnoise) and have Pmin < Pnoise at
some point in the reverse shear process. As shown in
Fig. 3(a), we find γF , the minimum strain required to
create a fragile state, also follows Eq. 2. In this fit, we
take φ0J = 0.82 from the previous fit, and we determine
φF , the minimum packing fraction for fragile states, from
the fit, obtaining φF = 0.706 ± 0.003 along with γb =
19± 2 (%) and α = 0.86± 0.12. We also note, however,
that the divergence predicted by Eq. 2 near φSJ and φF
is not clearly seen in our data. Below φF , the steady state
pressure falls to a plateau value near the noise level.

Figure 3(b) shows the experimentally constructed jam-
ming phase diagram in the (P, φ) space. The yield stress
curve is the Pst(φ) curve, showing the average steady
state pressure for each φ. Pst increases monotonically
from φF and appears to have an inflection point at φSJ .

FIG. 3. (color online) (a) Strain needed to create fragile state,
γF (blue), and SJ state, γSJ (black). The minimum packing
fraction for SJ states is φSJ ≈ 0.745. The blue and black solid
curves are fitted with Eq. (2). In (a), (c) and (d), solid gray
circles are raw data and open circles are averaged data. (b)
The jamming phase diagram in the (P, φ) plane built from
our data. The dynamic unjammed (uJ), fragile (F) and shear
jammed (SJ) states are separated by the yield stress curve
Pst and the jamming curve, P (γ = γSJ). The dark gray re-
gion below the noise level 0.3 N/m indicates static unjammed
states. φF is the minimum packing fraction for fragile states.
(c-d) The steady state non-rattler contact number Znr,st, non-
rattler fraction fnr,st and fabric anisotropy ρst obtained from
Eq. (1). Note the change in slope near φSJ in all three cases.
The red dashed line in (c) shows a linear fit using data above
φSJ . (e) Surface plot of all static states measured during for-
ward shear experiments in the space of P , φ and inverted
strain 1/γ space. Smooth curves join states accessed in a
single run. States are labeled using same color code as in (b).

However, for the steady states above φ ≈ 0.78, the pres-
sure of some particles becomes so large that their photoe-
lastic fringes can not be resolved, likely leading to artifi-
cially low pressure measurements. Pst(φ) also separates
SJ states and the dynamic unjammed states, which have
non-zero shear rates. The jamming curve is also plotted
as the P (φ, γSJ) curve, which consists of the pressure
value for each φ at the jamming strain γSJ . The gray
region below Pnoise refers to the static unjammed states
without measurable stress. Figure 3(e) extends (b) by
including the inverted strain axis and plots all the static
states measured during the forward shear process in the
(P, φ, 1/γ) space, highlighting their dependence on the
driving strain γ. A state is labeled SJ when the shear
strain exceeds γSJ determined using Eq. 2. All static SJ
(green), F (red) and unjammed (gray) states lie approx-
imately on a smooth surface in the 3D space.

To quantify the contact network structure on the yield
stress curve, we measure Znr,st, fnr,st and ρst, which are
obtained from fits to the form of Eq. (1). Figures 3(c)
and (d) show a change in slope in all three state variables
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FIG. 4. (color online) (a-b) Polarized images showing force
networks of typical steady states with packing fraction 0.72
and 0.78. (c) Physical shear strain per step averaged over
steady states, εrθ,st(r) for different φ, labeled by the colorbar.
The black dashed curve shows the basal profile with linear
nominal strain γ. rbulk = 7d is where εrθ,st vanishes for φ >
φc. (d) εbulk, defined as the averaged εrθ,st for r > rbulk,
drops at φSJ and vanishes at φc. Same figure plots the width
of shear zone w, defined as the range of r that εrθ,st is non-
zero. w(φ) drops to rbluk at φ ≈ φc.

at a packing fraction slightly above φSJ . The red dashed
line in Fig. 3(c) is the linear fit using data with φ > φSJ ,
which highlights the change in behavior at φSJ . Fig-
ures 4(a) and (b) show two polarized images taken from
the steady regime with packing fractions 0.72 and 0.78,
showing typical force network in F and SJ states.

When the system is shear-jammed, the basal friction
becomes unimportant, and the particle displacement field
deviates from the basal profile. Based on the azimuthal
displacement field per shear step averaged over the steady
states, uθ,st(r), we calculate the off-diagonal element of
the strain tensor εrθ,st(r) = ∂ruθ,st(r)−uθ,st(r)/(r+rin)
[36], which gives the mean physical shear strain field for
steady states (Fig. 4(c)). We also measure the width of
the shear zone w, which is the r value beyond which εrθ,st
becomes smaller than the noise level 0.02%. Figure 4(d)
shows w(φ) (in red), which jumps discontinuously near
φc ≈ 0.78, below which w = rout − rin ≈ 20d. Above φc,
w ≈ 7d , denoted rbulk in Fig. 4(c). The local packing
fraction in this shear band is also smaller than the global
value. The part of the system with r > rbulk just rotates
as a solid with the moving outer boundary in the steady
states for φ > φc. We also calculate εbulk, which is the
averaged εrθ,st for r > rbulk. Figure 4(d) shows εbulk
starts to drop at φF and becomes zero near φc.
Concluding discussion. We set up a multi-ring Couette
device that uses small basal friction to drive a 2D granu-
lar medium in a way that maintains a linear shear strain
profile until the system becomes jammed, allowing us to
probe the jamming transition close to φSJ . The set-up
subsequently shears the jammed system using the bound-

ary racks, allowing a study of the yield stress curve for a
wide range of packing fractions. Finally, reversing the di-
rection of the drive allows us to distinguish shear-jammed
(SJ) from fragile (F) states.

We systematically measured the phase boundaries in
the jamming phase diagram, including close to φSJ , lead-
ing to the following key observations: (i) In our system
φSJ ≈ 0.75, whose value may depend on the friction co-
efficient µ, polydispersity, and particle shape, though we
expect the qualitative features of the jamming phase dia-
gram to be the same. (ii) The SJ strain γSJ is well fit by a
stretched logarithmic function of φ. The measured expo-
nent α = 0.68±0.11 is in quantitative agreement with the
exponent α = 1/1.37 ≈ 0.73 measured from simulation of
sheared 3d frictionless soft spheres [15]. The same form,
but with α = 1, has also been observed in experiments on
shear-thickening suspensions [5]. (iii) We observe frag-
ile states below φSJ , which are not included in the tra-
ditional phase diagram [1]. In our system, small basal
friction forces and particle deformability may be crucial
for stabilizing the fragile force network. (iv) On the yield
stress curve, for increasing packing fraction, we find that
Pst has an inflection point at φSJ and that Znr,st, ρst and
fnr,st all show a change of slope near φSJ , suggesting a
physical transition in the nature of the steady states.

We also find that the quasi-static steady flow field
changes from the non-localized basal profile for systems
with φ < φF ≈ 0.7 to a localized shear band for φ > φc ≈
0.78, where φF < φSJ < φc. The coexistence of a solid
and fluid phase in slowly sheared dense granular matter
has been reported in many systems [24, 26, 27, 41–44]. In
this work we characterize the contact network associated
with the different quasistatic steady flow regimes. When
φ = φc, the steady states have ρst ≈ 0.05 and fnr,st ≈ 1,
showing a nearly isotropic, fully percolated contact net-
work. Notably, φc ≈ φµJ with µ ≈ 0.9, where φµJ is the
isotropic jamming packing fraction with friction coeffi-
cient µ [45]. We also note that Znr,st(φSJ) ≈ 3.4, simi-
lar to the mean contact number observed when a strong
force network percolates in both principal directions in
biaxial experiments [1], and Znr,st(φc) ≈ 3.9, close to the
isostatic value for ideal frictionless disks [40, 46].

The results suggest several directions for further study.
First, our shear device can generate other basal profiles
[33] to study how shear jamming affects the granular rhe-
ology for shear fields found in real world applications.
Second, the set-up can create a controlled shear band,
providing a new technique to study the generation and
evolution of shear bands in dense granular flow.

We thank Bulbul Charkraborty, Dong Wang, Mark D.
Shattuck, Karen E. Daniels, Dapeng Bi, Hisao Hayakawa
and Michael Rubinstein for fruitful discussions. Special
thanks to Dong Wang, Yuchen Zhao, Bernie Jelinek and
Richard Nappi for technical support. This work was sup-
ported by NSF-DMR1206351, NSF-DMS1248071, and
NASA NNX15AD38G. H.Z. also received support from



5

NSFC 41672256 and NSFC(Jiangsu) BK20180074.

∗ yiqiu.zhao@duke.edu
† jb@jonathan-bares.eu
‡ tjzhenghu@gmail.com
§ socolar@phy.duke.edu
¶ Deceased 10 July 2018.

[1] D. Bi, J. Zhang, B. Chakraborty, and R. P. Behringer,
Nature 480, 355 (2011).

[2] P. Urbani and F. Zamponi, Physical Review Letters 118,
038001 (2017).

[3] E. Han, I. R. Peters, and H. M. Jaeger, Nature commu-
nications 7, 12243 (2016).

[4] S. Majumdar, I. R. Peters, E. Han, and H. M. Jaeger,
Physical Review E 95, 012603 (2017).

[5] E. Han, M. Wyart, I. R. Peters, and H. M. Jaeger, Phys-
ical Review Fluids 3, 073301 (2018).

[6] N. M. James, E. Han, R. A. L. de la Cruz, J. Jureller,
and H. M. Jaeger, Nature materials 17, 965 (2018).

[7] D. Z. Chen, H. Zheng, D. Wang, and R. P. Behringer,
Nature communications 10, 1283 (2019).

[8] R. Seto, A. Singh, B. Chakraborty, M. M. Denn, and
J. F. Morris, Granular Matter 21, 82 (2019).

[9] D. Howell, R. P. Behringer, and C. Veje, Physical Review
Letters 82, 5241 (1999).

[10] J. Ren, J. A. Dijksman, and R. P. Behringer, Physical
Review Letters 110, 018302 (2013).

[11] H. Zheng, J. A. Dijksman, and R. P. Behringer, Euro-
physics Letters 107, 34005 (2014).

[12] D. Wang, J. Ren, J. A. Dijksman, H. Zheng, and R. P.
Behringer, Physical review letters 120, 208004 (2018).

[13] M. Otsuki and H. Hayakawa, arXiv:1810.03846.
[14] S. Chen, T. Bertrand, W. Jin, M. D. Shattuck, and C. S.

O’Hern, Physical Review E 98, 042906 (2018).
[15] N. Kumar and S. Luding, Granular Matter 18, 58 (2016).
[16] T. Bertrand, R. P. Behringer, B. Chakraborty, C. S.

O’Hern, and M. D. Shattuck, Physical Review E 93,
012901 (2016).

[17] M. Baity-Jesi, C. P. Goodrich, A. J. Liu, S. R. Nagel,
and J. P. Sethna, Journal of Statistical Physics 167, 735
(2017).

[18] A. J. Liu and S. R. Nagel, Nature 396, 21 (1998).
[19] M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and

P. Claudin, Physical Review Letters 81, 1841 (1998).
[20] H. Vinutha and S. Sastry, Nature Physics 12, 578 (2016).
[21] S. Sarkar, D. Bi, J. Zhang, R. Behringer, and

B. Chakraborty, Physical review letters 111, 068301
(2013).

[22] S. Sarkar and B. Chakraborty, Physical Review E 91,
042201 (2015).

[23] S. Sarkar, D. Bi, J. Zhang, J. Ren, R. P. Behringer, and
B. Chakraborty, Physical review E 93, 042901 (2016).

[24] C. T. Veje, D. W. Howell, and R. P. Behringer, Physical
Review E 59, 739 (1999).

[25] J. Zhang, T. S. Majmudar, A. Tordesillas, and R. P.
Behringer, Granular Matter 12, 159 (2010).

[26] R. Moosavi, M. R. Shaebani, M. Maleki, J. Török, D. E.
Wolf, and W. Losert, Physical Review Letters 111,
148301 (2013).

[27] P. Coussot, J. S. Raynaud, F. Bertrand, P. Moucheront,

J. P. Guilbaud, H. T. Huynh, S. Jarny, and D. Lesueur,
Physical Review Letters 88, 218301 (2002).

[28] D. Fenistein and M. van Hecke, Nature 425, 256 (2003).
[29] C. E. Maloney and A. Lemâıtre, Physical Review E 74,
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